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Abstract

While many principal-agent problems deal with incentivizing an employee (agent) to work, others

exist where the agent is an independent contractor (IC). With ICs, the contract terms must not only

incentivize the IC to accept the principal’s contract but also incentivize her to allocate more time

to it over the other contracts in her portfolio. We study this dual issue in this paper. We generate

sharp predictions using standard theory and then we examine them using experimental data. Both

theoretical analysis and experimental results indicate that those contract terms that may lead an agent

to accept a project may not be the same terms that will motivate her to allocate as much time to it as

a principal would like. Hence, our paper suggests that there is a tradeoff between contract choice and

time allocation that may need to be considered by principals.
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1 Introduction
Consider the following situation. You are a homeowner (Principal) and want to hire a contractor
(Agent) to remodel your house. You have one contractor in mind and think she is a skilled
worker, but because of that, others also want to hire her. So, you offer her a contract that
sets out a compensation scheme for remodeling your house. Since the contractor is not your
employee but an independent contractor (IC), the contract must provide her with incentives to
devote time to your project instead of the contracts of other homeowners. But what contracts
are successful in doing so?

The answer to this problem has important implications for our economy and its gig-economy
sector. For example, Manyika et al. (2016) estimate that 20 to 30 percent of the working-age
population in the United States and the EU engage in nontraditional work arrangements. While
many of these workers might prefer conventional employment inside the firm, a good portion
accept contract work as independent contractors, i.e., self-employed individuals who provide
certain services to clients for a limited period.

Contracting with an IC presents two problems. The first problem is that the IC might not
even accept your contract because someone else might offer her a contract she finds more at-
tractive. This is the contract-choice problem. The second problem you might face is that even
if the IC accepts your contract, she must allocate her time between your project and the other
projects in her portfolio, and she might not allocate enough time to yours.1 This is the contract-

time allocation problem. Therefore, a successful contract must overcome these two problems:
the contractor must choose it over competing contracts, and once chosen, it must successfully
compete for her time with the other contracts she already accepted.

To establish what types of contracts would successfully overcome these two problems, we
must first understand how people choose between and allocate their time across contracts to
execute a task. In this paper, we design an experiment to study precisely that. In the first part
of the experiment, subjects choose one contract from several pairs of contracts. In the second
part, they allocate a time budget between the contracts in these pairs. We then discuss how our
experimental results can help to design contracts to overcome the contract-choice and contract
time-allocation problems.

Although choosing between contracts is a more familiar exercise, allocating time across
contracts has been less studied, at least experimentally. When allocating time across contracts,

1 Successful contractors often work on several projects at once, and the biggest complaint about them is that
one cannot get them to pay attention to a job given their other commitments.
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subjects self-impose the time they want to spend on each contract’s underlying task, which cre-
ates an opportunity cost for the time spent on a contract. By allocating more time to a contract,
the probability of successfully executing the contract’s task increases, but at the expense of re-
ducing the probability of completing the other contract’s task. Going back to our contractor,
once she has accepted Contracts A and B, if she decides to allocate more of her time to Contract
A, the probability of successfully fulfilling Contract A increases, whereas that of Contract B
might decrease.

We base our experimental design on a standard model of choice and time-allocation between
contracts that makes sharp predictions about behavior in the experiment given the contracts
we use. Our contracts pay either a high or a low payoff depending on the Agent’s ability
to execute a task by a deadline (which the Agent self-imposes when allocating time). The
key feature of these contracts is that the probability of getting the high payoff is higher if the
Agent succeeds in the task than if she fails.2 We interpret the contract’s low and high payoffs
as hard incentives, i.e., the Agent’s payment, and the probabilities of getting the high payoff
conditional on succeeding and failing the task as soft incentives, given they influence the Agent’s
probabilistic assessment of getting the high payoff as a function of time allocated to a contract.
Finally, the difficulty of the task being contracted for is proxied by the success rate of others
who attempted the same task under a given deadline in the past. Based on this rate, the Agent
can form beliefs about how difficult the task is and, hence, how likely she is to succeed in the
task by the deadline.

The model makes two main predictions about subjects’ behavior in the experiment. The
first prediction is that when allocating time between contracts, the only contractual feature that
matters for the time allocated to its task is the difference in payoffs between succeeding and
failing to complete the task. We call this difference the contract’s spread. The second prediction
is that, when choosing between two contracts, the payoff one gets if one fails to complete
the contract’s task matters independently of its impact on the contract’s spread. We call this
payoff the contract’s failure payoff. These two predictions imply that the characteristics of a
contract that make it attractive for choice can make it less effective in attracting time. Therefore,
the model predicts that our Principal might be unable to design a contract that simultaneously
overcomes the contract-choice and contract-time allocation problems — unless she is willing to

2 Although real-world contracts do not use randomization, the randomization in our contracts is just an experi-
mental way of emulating that a contractor’s ability to execute a task by a deadline is always subject to circumstances
the contractor cannot control. Therefore, even if the contractor allocates plenty of time to a task, she cannot be
sure that she will complete the task by the deadline. But, by allocating more time to a task, she can influence the
probability of completing the task by the deadline.
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offer a contract that costs more than the ones she is competing with.
In the experiment, we present subjects with pairs of contacts which they first have to choose

between and later allocate time across. We designed these contract pairs to achieve three goals.
The first goal is to investigate how subjects react to controlled changes in the different param-
eters of a contract. For instance, how do subjects react to changes on hard as opposed to soft
incentives? The second goal is that the model should make sharp predictions about choices
and time allocations in the experiment. These predictions then provide a benchmark to inter-
pret subjects’ behavior in the experiment. The third goal is that the contract should have the
same expected cost to the Principal. Therefore, we focus on contracts that can cost-effectively
overcome the contract-choice and contract-time allocation problems.

We designed the pairs of contracts used in the experiment to achieve three goals. The first
goal is to investigate how subjects react to controlled changes in the different parameters of a
contract. For instance, how do subjects react to changes on hard as opposed to soft incentives?
The second goal is that the model should make sharp predictions about choices and time allo-
cations in the experiment. These predictions then provide a benchmark to interpret subjects’
behavior in the experiment. The third goal is that one of the contracts in the pair should not cost
more (in expectation) than the contract it is competing against. Therefore, we focus on contracts
that can cost-effectively overcome the contract-choice and contract-time allocation problems.

In risk contracts, the high payoff is higher than in the baseline, but the low payoff is lower.
It is a mean-preserving spread of payoffs relative to the baseline. Therefore, the Agent will face
a riskier lottery than in the baseline contract, no matter if she solves the task. Although intuition
suggests that a risk-seeking Agent should always prefer these contracts, the model predicts that
an Agent’s choice will also depend on her confidence in her ability to complete the task. If the
Agent is sufficiently risk-averse, she should always choose the baseline. If she is sufficiently
risk-seeking, she should always choose the risk contract. But for intermediary values of risk-
aversion, the model predicts that the Agent should choose a risk contract over the baseline if
(and only if) she is sufficiently confident. Interestingly, the model again predicts that the Agent
should always allocate more time to risk contracts than the baseline because they have higher
spreads

In dominated contracts, the probability of getting the high prize is smaller than in the base-
line regardless of whether the subject can solve the task. Therefore, the choice between the
baseline and a dominated contract is obvious. Time allocation is, however, trickier. The model
predicts that the Agent should allocate more time to the baseline than to one dominated con-
tract but less time to the baseline than to the other. As we discuss shortly, the predictions about

4



dominated contracts offer a crucial insight into our subjects’ time allocation behavior.
Finally, in ambiguous contracts, the contract only provides partial information about the

difficulty of its underlying task. Intuition suggests, and the model predicts, that the Agent should
choose the baseline contract over an ambiguous contract if (and only if) she is ambiguity averse.
We refrain, however, from making predictions about time allocation in ambiguous contracts
because they rely on information we cannot elicit from subjects’ behavior. In contrast, the other
predictions of the model in our experiment only rely on the terms of the contract and some
subjects’ characteristics that we can elicit in the lab.3

We find that, across all subjects, 62.4 percent of the model’s predictions are correct. When
we split the predictions between choice and time predictions, we get that 66.2 percent of choice
predictions and 59.5 of time predictions are correct. While looking at these averages might
suggest that the model performs equally well in describing subjects’ choices and time alloca-
tions, these averages hide a meaningful difference at the individual level. Only 37 of our 120
subjects adhere to the model’s choice predictions more frequently than its time predictions. As
we discuss in detail later, this is to be expected, given that the model’s time predictions are more
robust than its choice predictions.

Our results further suggest that a contract’s failure payoff matters when subjects choose
between contracts, which corroborates one of the main intuitions of the model. However, they
seem to matter much more than what the model predicts when a contract’s failure payoff is
too low. That is, subjects shy away from contracts that compensate them poorly if they do
not complete the task, even if these contracts compensate them generously if they do. Our
results also suggest that subjects tend to allocate more time to contracts with higher spreads,
which corroborates the model’s other main intuition. However, they do not react to spreads as
much as the model predicts. The reason seems to be that subjects often allocate more time to
the contract they choose, even if it has a lower spread than the other contract in the pair. We
call this tendency the “attractiveness bias,” because allocating more time to the contract one
deems more “attractive” in choice can lead to a sub-optimal time allocation. Subjects’ choices
and time allocations between the baseline contract and one of the dominated contracts provide
the clearest evidence for this type of behavior. Consistent with the model, over 95 percent of
subjects choose the baseline over the dominated contract but only 11 percent of subjects allocate
more time to the dominated contract as the model predicts.

These results have important implications for effectively designing contracts to overcome
the contract-choice and contract-time allocation problems. First, the Principal should avoid of-

3 We elicit these characteristics in Part III of the experiment.
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fering contracts with a failure payoff that is too low. Although decreasing a contract’s failure
payoff will increase its spread, which our results suggest can help with the contract-time alloca-
tion problem, the more we decrease failure payoffs, the worse the contract will perform in the
contract-choice problem. But then, by the attractiveness bias, these contracts might not perform
as well in the contract-time allocation problem as the model predicts. Therefore, our experimen-
tal results suggest that an important tension the Principal faces when designing a contract that
is not too costly and can overcome the contract-choice and contract-time allocation problems is
to decide how much to lower the contract’s failure payoffs to increase its spread, which helps
with the contract-time allocation problem, while making sure that the failure payoff is not too
low, since this will impair the contract’s performance in the contract-choice problem and, by
the attractiveness bias, reduce — or even over-rule — its efficacy in the contract-time allocation
problem.

2 Literature Review
The paper relates to several strands of literature within economics, such as non-exclusive con-
tracting in contract theory, incentivizing worker’s productivity in principal-agent models, and
attention/time-allocation.

Time-allocation The paper naturally relates to the literature on time-allocation and multi-
tasking. Burmeister-Lamp et al. (2012) examine agents who allocate their time between a wage
job (their “day job”) and a new enterprise (so called hybrid entrepreneurs). This case relates to
the comparison in our paper of a given “safe” contract and a “risky” contract which results in
a higher outcome if successfully completed but lower outcome than in “safe” if unsuccessful.
Burmeister-Lamp et al. (2012) find that entrepreneurs’ risk attitudes do not reliably predict
their actual time allocation behavior, which contradicts their theoretical findings. In contrast,in
our paper when agents make time-allocation decisions between contracts, we show that risk
attitudes should have no influence on time-allocation decisions.4

Multi-tasking theory Dewatripont et al. (2000) presents an excellent discussion of multitask
agency theory papers and their insights. In scenarios involving multiple principals, the phe-
nomenon of effort substitution prompts principals to vie for the agent’s attention. Consequently,

4 Avoyan and Schotter (2020) investigate how players allocate their limited attention across games and find
that attention is attracted to particular features of the games. Avoyan et al. (2024) study the discrepancy between
planned and actual attention allocation, demonstrating that individuals often fail to accurately predict their own
attention distribution across tasks. This finding is crucial for understanding the dynamics of time allocation be-
tween tasks in this paper, as it highlights the potential for misalignment between anticipated and actual behavior in
decision tasks as seen in strategic settings.
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incentive structures tend to be overly severe leading to exclusivity—where the agent is com-
pelled to engage exclusively with a single principal (see, for example, Martimort (1996), Dixit
(1998) and Bernheim and Whinston (1998)). While in our paper we have “effort” substitution,
since time can either be spent on one or the other contract, we are able generate non-exclusive
outcomes due to agent’s overconfidence in their skills compared to a representative agent.

Bar-Isaac and Deb (2014) study a different angle by focusing on agent’s reputation con-
cerns when facing common or separate audiences who form beliefs based on joint or separate
outcomes. Halac and Prat (2016) theoretically examine the issue of worker performance in
the context of potential monitoring by a manager, where manager decides their level of costly
attention.

Non-exclusive contract theory Several papers examine non-exclusive contracts in insurance
markets and optimal contracting in non-exclusive relationships. Ales and Maziero (2016) study
the effect of the presence of non-exclusive contracts on a decentralized market. The paper shows
that competition and non-exclusivity of insurance contracts significantly reduce the amount of
insurance provided. Attar et al. (2011) consider a “market for lemons” under non-exclusivity.
Bisin and Guaitoli (2004) study a static moral hazard and Attar et al. (2014) study adverse
selection environments under non-exclusivity assumption on contracts. In contrast, in the cur-
rent paper we bring to light that incentivizing choice (acceptance of contract) is not the same
problem as incentivizing time allocation (attention to a contract within a portfolio), which is of
particular importance in environments with independent contractors.

Experiments on principal-agent models Experimental papers have also explored principal-
agent relationships, but focusing on exclusive contracts. For example, Hoppe and Schmitz
(2013) examine a setting where agents have private information. A key observation from the
setting is that when a principal extends a contract to an agent without knowledge of the agent’s
type, there is a trade-off between optimizing ex post efficiency in unfavorable circumstances
and maximizing profits in favorable circumstances. Cabrales and Charness (2011) study optimal
contracts in a scenario involving hidden information and team production. A principal presents a
team of two agents, whose skill levels are unknown, with one of three potential contract options.
The paper finds that frequent refusals of the more imbalanced contract options prompt principals
to adjust by offering more advantageous contract options. Corgnet et al. (2018) investigate
wage-irrelevant goal-setting in principal-agent model and find that agents’ performance is better
in the presence of goal setting. In contrast to these papers, we are studying the terms of a simple
contract to draw agent’s attention away from other projects towards the principal’s project.
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3 Model and Predictions
In this section, we first present the model we use to predict how people choose between and
allocate time across two contracts. We then highlight the key factors that the model predicts
should drive choice and time allocation. We then introduce the types of contracts we study and
state the model’s specific predictions about choice and time allocation in the pairs of contracts
we consider.

3.1 Environment
Our contracts specify how an agent will be paid for solving a task by a given deadline t. There-
fore, our contracts are compensation schemes.5 If the agent succeeds in completing the task by
the deadline, she receives a high prizeH with probability pS or a low prize Lwith the remaining
probability, where L < H . If she fails in the task, she receives H with probability pF and L
with the remaining probability, where pF < pS .

Utility of a Contract To evaluate a contract, the agent must form beliefs about the difficulty
of the task. To anchor these beliefs, our contracts inform the agent of the fraction α ∈ [0, 1] of
people that could solve the task by the given deadline. We call such α the completion rate, and
it proxies the difficulty of a task. Therefore, a contract L is described by the vector (H,L, α, pS,

pF , t). We we denote the set of these contracts by L. Figure 1 graphically represents a contract
L ∈ L .

Agent

Success Failure

Nature

H

pS

L

1− pS

Nature

H

pF

L

1− pF

Figure 1: Graphical Representation of a Contract

5 In our experiment, the task is solving a maze in a given amount of time.
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We assume that the agent is a (subjective) expected utility maximizer, which upon learning
the difficulty α of the task and the amount of time she has to solve it updates her beliefs about
her probability of solving the task and uses this updated belief to calculate the expected utility
of the contract.6 Formally, the agent evaluates a contract L ∈ L by a utility function U : L→ R
defined as

U(L) := p(α, t) (pSu(H) + (1− pS)u(L)) + (1− p(α, t)) (pFu(H) + (1− pF )u(L)) , (1)

where u : R → R is a strictly increasing (Bernoulli) utility function and p(α, t) is the agent’s
belief that she will solve the task in, at most, t units of time given that a fraction α of people
have done so.

Choice Between Contracts When choosing between two contracts in a pair, say L1 and L2,
the agent maximizes U . Hence, for i ∈ {1, 2}, she chooses Li from the menu {L1,L2} if, and
only if, U(Li) > max{U(L1), U(L2)}.

Time Allocation Across Contracts When allocating time across two contracts, the agent
allocates a budget of T units of time between the two contracts’ underlying tasks so as to
maximize the sum of the contracts’ expected utilities.

To state the agent’s optimization problem, let Lt? be the contract with the same character-
istics as L, except for the deadline, which is now given by t?.7 For each t > 0, define the
time-conditional utility function U(·|t) : L→ R be U(L|t) := U(Lt).

Given two contracts L1 and L2, suppose that the agent decides to allocate t minutes to L1,
and T − t to L2. She will then engage in the contracts (L1)t and (L2)T−t, which she evaluates
by U(L1|t) and U(L2|T − t). We assume that the agent allocates time by solving

max
t∈[0,T ]

[U(L1|t) + U(L2|T − t)] . (2)

We further assume that, for all α ∈ [0, 1],

1. p(α, 0) = 0;

2. p(α, ·) is increasing, concave and continuously differentiable.8

6 For each α, this evaluation formula for contracts is a particular case of the preferences of an agent in the
canonical moral hazard problem when contracts only have two outputs, time is replaced by effort, and the cost of
effort is zero. See Sinander (2024).

7 The completion rate α still gives the fraction of people that successfully completed the task when the deadline
was t.

8 If p were linear or convex, the solution of the optimization problem (2) would be to allocate T to the same
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The concavity of p(α, ·) means that there are decreasing returns to time allocated to a task.
That is, as t increases, the cumulative probability of solving the task in at most t seconds in-
creases at decreasing rates.

3.2 Spreads, choice and time allocation
To derive predictions about choice and time allocation, define, for every L ∈ L,

ULS := pSu(H) + (1− pS)u(L)

ULF := pFu(H) + (1− pF )u(L)

∆L := ULS − ULF = (pS − pF )(u(H)− u(L))

.

ULS is the expected value of the lottery the agent gets if she succeeds in solving the task, ULF
is the expected value of the lottery the agent gets if she fails in solving the task. We sometimes
refer to ULF as the agent’s failure payoff. Finally, we say that ∆L is the spread of L. Given the
agent’s utility over contracts, ∆L is the product of (pS − pF ), the spread in probabilities of L,
and (u(H)− u(L)), the spread in payoffs of L.

As we now show, although the spreads are important both for choice and time allocation,
the model predicts that the difference in failure payoffs matter for choice independently of its
impact in spreads whereas it matters for time allocation only through its effect on the spread.
This can create a wedge between choice and time allocation predictions in the sense that the
model can predict that the agent should choose one contract over the other, but allocate more
time to the contract that is not chosen.

Choice Prediction Recall that given two contracts L1 and L2, L1 should be chosen from
{L1,L2} if, and only if, U(Li) > max{U(L1), U(L2)}. Substituting the evaluation formula
(1) in this expression and manipulating, we get that L1 is chosen from {L1,L2} if, and only if,

p(α1, t1)∆L1 − p(α2, t2)∆L2 > UL2F − U
L1
F .

Assuming, as is the case for most choices in our experiment, that α1 = α2 = α and that
t1 = t2 = t, L1 is chosen from {L1,L2} if, and only if,

p(α, t)(∆L1 −∆L2) +
(
UL1F − U

L2
F

)
> 0 (3)

The inequality (3) implies that choice depends on the agent’s beliefs, and in two contractual

contract that would receive more time if p was concave.
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features: the difference in the contracts’ spreads and in their failure payoffs. Moreover, the
difference in failure payoffs matter even after we control for the difference in spreads.

Observation 1 In two contracts with equally difficult tasks, the difference in failure payoffs can

influence choice even after we control for the difference in spreads.

Time Prediction Solving 2 implies that the time tL1 allocated to contract L1 must satisfy:

p′(α2, T − tL1)
p′(α1, tL1)

=
∆L1
∆L2

,

where p′(αi, ·) is the derivative of p with respect to time. Given our assumption that p is
concave, the mapping t 7→ p′(α2,T−t)

p′(α1,t)
is non-decreasing. Therefore, tL1 is a non-decreasing

function of the ratio of spreads of L1 and L2, i.e., the higher ∆L1

∆L2
is, the higher tL1 will be. In

particular, if both tasks are equally difficult (that is, if α1 = α2 = α), then the contract with
higher ratio of spreads will receive more than T

2
, hence more time than the other contract.

Observation 2 In two contracts with equally difficult tasks, the one with higher spread will

attract more time, and the amount of time it attracts is increasing on its spread. Therefore,

failure payoffs should only matter for time allocation through their effect on a contract’s spread.

3.3 Contract Types
We now describe the types of pairs of contracts we study in the experiment and state the model’s
choice and time allocation predictions in these types. For an explicit derivation and detailed
discussion of these predictions, see Appendix A.

The pairs of contracts in the experiment consist of a baseline contract, such as the one in Ta-
ble 1, paired with eight other contracts derived from the baseline by making controlled changes
to its characteristics. We consider four different types of controlled changes, which induce four
different types of contracts: confidence (C), risk (R), dominated (D), and ambiguous (A).

Table 1: Characteristics of LB

Characteristics Value
High Payoff HB

Low Payoff LB
Completion rate αB

Probability High Payoff — Solve pBS
Probability High Payoff — Not Solve pBF
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3.3.1 Confidence Contracts

A confidence contract LC has the same payoffs, completion rate and deadline as LB, but the
probability of getting the high payoff if the agent succeeds in the task is greater than the corre-
sponding probability in LB whereas the probability of winning the high payoff if the agent fails
in the task is lower than the corresponding probability in LB.

Formally, LC is a confidence contract, if HC = HB, LC = LB, αC = αB and

pCF < pBF < pBS < pCS and pBF + pBS = pCS + pCF .

Intuitively, a confident agent, that is, one that believes that she is very likely to succeed in
the task, will choose this contract over the baseline contract because the probability of getting
H if she succeeds in the task is higher than in the baseline. But given the increase in the spreads
of probabilities, the model predicts that confidence contracts should always attract more time.

3.3.2 Risk Contracts

A risk contract LR has the same probabilities, completion rate and deadline as the baseline
contract LB, but its high payoff is greater than the high payoff of LB whereas its low payoff is
smaller than the low payoff of LB. Moreover, the average of of the high and low prizes for LB
and LR are the same. Formally, LR is a risk contract if pRS = pBS , pRF = pBF , αR = αB , and

LR < LB < HB < HR and LR +HR = LB +HB.

Intuitively, risk contracts are appealing to risk-seeking agents. However, as we show in Section
3.4.2), how confident the agent is (i.e., the value of p(α, t)) also influences the choice between
a risk contract and the baseline. But given the increase in the spreads of probabilities, the model
predicts that risk contracts should always attract more time.

3.3.3 Dominated Contracts

A dominated contractLD has the same payoffs, completion rate and deadline asLB, but both the
probabilities of winning the high prize are lower than in LB. Formally, HD = HB, LD = LB,
αD = αB, but

pDS < pBS and pDF < pBF .

Clearly, an agent should always choose the baseline contract over a dominated contract.
Time allocation, however, depends on the ratio of spreads. Therefore, dominated contracts
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allow us to test whether the agent understands the relevance of spreads when allocating time.
In particular, do subjects understand that an attractive contract in choice should, in some cases,
receive less time than a more attractive one?

3.3.4 Ambiguous Contracts

An ambiguous contract has the same payoffs, probabilities of getting the high prize, and dead-
line as LB, but the completion rate is ambiguous in the sense that the agent does not know the
exact value of the completion rate. Formally, HA = HB, LA = LB, pAS = pBS , pAF = pBF , but, for
some ε > 0,

αA ∈ [αB − ε, αB + ε].

Intuitively, choice between an ambiguous contract and the baseline depends on the agent’s am-
biguity attitude. That is, ambiguity averse agents should choose the baseline over an ambiguous
contract, whereas ambiguity seeking agents should to the opposite.

3.4 Predictions
We now state the model’s predictions for choice and time allocation between the types of pairs
we use in the experiment.

3.4.1 Confidence Contracts

Prediction 1 (Choice C) An agent should choose the confidence contract over the baseline one

if, and only if, p(α, t) > α, i.e., if she believes that her probability of solving the task is higher

than the probability of a randomly selected person in the population solving the task.9

Prediction 2 (Time C) An agent should allocate strictly more time to a confidence contract

than to the baseline one.

Prediction 3 (Time CR) The amount of time allocated to a confidence contract increases as

pCS − pCF increases.

3.4.2 Risk Contracts

Prediction 4 (Choice R)

1. If an agent is sufficiently risk-loving, she will choose the risk contract.

9 We interpret the condition p(α, t) > α as saying that the agent is over-confident at completion rate α, where
we use over-confidence in the sense of over-placement.
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2. If an agent is sufficiently risk-averse, she will choose the baseline one.

3. For intermediate levels of risk aversion, the choice is determined by the agent’s confidence

attitudes. Specifically, only sufficiently confident subjects will choose the risky contract

over the baseline one.10

Prediction 5 (Time R) An agent should allocate strictly more time to a risk contract than to

the baseline one.

Prediction 6 (Time RR) The amount of time allocated to the risk contract increases as HR −
LR increases.

3.4.3 Dominated Contracts

Prediction 7 (Choice D) The agent should always choose the baseline contract over a domi-

nated one.

Prediction 8 (Time D) When pDS − pDF > pBS − pBF , more time should be allocated to LD; and

when pDS − pDF < pBS − pBF , more time should be allocated to LB.

Prediction 9 (Time DR) The amount of time allocated to a dominated contract increases as

pDS − pDF increases.

3.4.4 Ambiguous Contracts

To make predictions about ambiguous contracts, we need to make assumptions about how the
agent resolves the uncertainty about αA. We assume that the agent reduces ambiguity to risk
by taking the completion rate of an ambiguous contract as the convex combination of the end-
points of the interval specified in the ambiguous contract, where the weights she assigns to the
endpoints measure her ambiguity attitude.11

Prediction 10 (Choice A) Assuming that p(·, t) is increasing given the deadline t, the agent

should choose the baseline contract over the ambiguous one if, and only if, she is ambiguity

averse.

Since time predictions about ambiguous contracts require we make assumptions about the
cross-derivative of the belief function with respect to time and the completion rate, we refrain
from making time predictions for ambiguous contracts ,and let the experimental results inform
us about subjects’ time allocation when facing such contracts.

10 See Appendix A for a derivation of the model’s formal prediction.
11 See Appendix A for the formal model the agent uses to resolve the uncertainty about the completion rate.

14



4 Experimental Design
The experiment consisted of three parts. In Part I, subjects chose a contract from pairs of con-
tracts, where each contract in a pair had a 60-seconds deadline. In Part II, subjects allocated 120
seconds across the contracts in the same pairs. In Part III, we elicited the subjects’ characteris-
tics required to test the model. In the end of the experiment, subjects had to solve three mazes
to get to their payoffs. We discuss how we selected the three mazes when discussing subject’s
Payoffs below.

The task associated with each contract is to solve a maze with completion rate α.12 An
important aspect of the design is that subjects only saw the mazes associated with the contracts
after Parts I, II, and III. Therefore, the contract’s completion rate was the only information they
had about the difficulty of a maze when choosing and allocating time.

Table 2 displays the contracts we used in the experiment. LB acted as the baseline con-
tract. We then generated two contracts for each type of contract described in Section 3.3: two
confidence contracts (LC1 and LC2), two risk contracts ( LR1 and LR2), two dominated con-
tracts (LD1 and LD2), and two ambiguous contracts (LA1 and LA2). Therefore, subjects had to
choose and allocate time in 8 pairs of contracts composed of LB, and each of these eight derived
contracts.

A key feature of the contracts in Table 2 is that their expected cost for a risk and ambiguity
neutral principal is, at most, that of the baseline contract. Without this restriction, the principal
could easily compete against the baseline by offering a contract that has higher prizes, or higher
probabilities of getting the high prize, than the baseline.

Contract LB LC1 LC2 LR1 LR2 LD1 LD2 LA1 LA2

High Prize $8 $8 $8 $10 $12 $8 $8 $8 $8
Low Prize $4 $4 $4 $2 $0 $4 $4 $4 $4
Completion Rate .5 .5 .5 .5 .5 .5 .5 [.4, .6] [0,1]
High Prize | Complete .6 .8 1 .6 .6 .1 .3 .6 .6
High Prize | Not .4 .2 0 .4 .4 0 0 .4 .4
Expected Value 6 6 6 6 6 4.4 4.6 — —

Table 2: List of Contracts in the Experiment

12 More precisely, the completion rate was the fraction of a pool of undergraduate students that could solve the
maze in, at most, 60 seconds.See Appendix B.1 for details on the procedure to generate and calibrate the mazes.
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4.1 Part I: Choosing Between Contracts
In Part I, we informed subjects that each contract’s deadline was 60 seconds. Therefore, if they
choose a contract from a pair and the pair is selected for payment, they would have 60 seconds
to solve L’s associated maze. For each pair of contracts, subjects then had to either choose
one contract in the pair or declare they were indifferent between them. Therefore, subjects
were effectively choosing between (i) the baseline contract, (ii) the alternative contract, or (iii)
declaring they were indifferent between these two options.

Figure 2 displays an example of the sample screen in Part I. For each pair of contracts,
the subjects stated their choices by clicking the button which had the label of the contract they
preferred, or by clicking the ‘Either V or W’ button if they were indifferent. We randomized
the order in which the 8 pairs of contracts were presented to a subject and the order that the
contracts in a pair were displayed in the screen (i.e., either on the left or on the right).

Figure 2: Sample Screen from Part I

The subjects did not receive any feedback between choices, nor did they see the mazes
associated with each contract. They were told that at the end of the experiment, i.e., after
completing Parts I, II, and III, one of the pairs in Part I would be randomly selected for payment,
and they would then get to solve the maze associated with the contract they chose from the pair
in at most 60 seconds. If a subject declared indifference in the selected pair, that is clicked the
button ‘Either V or W,’ we randomly selected a contract, and, hence, the maze that the subject
had to solve.
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4.2 Part II: Allocating Time Between Contracts
After completing Part I, subjects proceeded to Part II. In Part II, we presented subjects with
the same 8 pairs of contracts and asked them to state how they would allocate 120 seconds
between the contracts (the mazes associated to the contracts). Figure 2 displays a sample screen
presented to subjects in Part II.

Subjects had to state how many seconds they wanted to allocate to each option by inputting
an integer in the corresponding field. If a subject stated that she wanted to allocate 40 seconds
to Option V, then the software automatically assigned 80 seconds to Option W. In this way, we
ensured that subjects exhausted their time time budget.

Similarly to Part I, we randomized the order in which the 8 pairs of contracts were presented
to a subject and the order that the contracts in a pair were displayed in the screen (i.e., either on
the left or on the right).

Figure 3: Sample Screen from Part 2

Subjects did not receive any feedback between time allocation decisions, nor did they see
the mazes associated with each contract. They were told that at the end of the experiment,
i.e., after completing Parts I, II, and III, one of the pairs in Part II would be randomly selected
for payment. They would then get to solve the two mazes associated with the selected pair of
contracts under the time allocation they stated for that pair.
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4.3 Part III: Eliciting Subjects’ Characteristics
In Part III, subjects faced 8 different elicitation tasks. The tasks elicited the characteristics we
need to test the model’s predictions, namely confidence, risk, and ambiguity attitudes. Impor-
tantly, we elicited these characteristics using elicitation tasks that we can show are incentive
compatible conditional on people behaving consistently with the model. We also elicited other
characteristics, e.g., attitude towards the reduction of compound lotteries and alternative mea-
sures of confidence and risk attitudes. See Appendix B.2 for further details.

4.4 Payoffs
A subject’s payoff in the experiment was the sum of her payoffs in three tasks, each randomly
drawn from one of the Parts of the experiment. In the randomly drawn task from Part I, the
subject had 60 seconds to solve the maze associated with the contract she chose. The subjects’
payoff in this task was the outcome of playing the lottery the contract specifies given their
success or failure in solving the maze.

In the randomly drawn task from Part II, the subject had to solve the mazes associated with
both contracts in the pair under the time allocation she stated. The subjects’ payoff in this task
was the sum of the outcomes of the two lotteries the contracts in the pair specify given their
success or failure in solving the mazes.

In the randomly drawn task from Part III, the subject’s payoff depended on the randomly
chosen elicitation task. See Appendix B.2 for an explanation of the payoffs a subject would
receive from each elicitation task.

4.5 Implementation
The experiment was conducted at the Center for Experimental Social Science (CESS) labora-
tory at New York University, using oTree (Chen et al. (2016)) during February and March of
2020. We conducted five sessions, with a total of 120 participants recruited from the general
population of NYU students using hroot (Bock et al. (2014)). The experiment lasted approx-
imately 60 minutes, and average earnings, including $10 show-up fee, were $31, and ranged
from $18 to $46.

5 Results
We now proceed to the results of the experiment. We first examine how successful the model
is in predicting subjects’ behavior. We are particularly interested in why the model fails and
what can we learn from its failures. We then present what changes to the characteristics of the
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baseline contract lead to a contract that can effectively compete against the baseline, both when
subjects choose between and allocate time across contracts.

5.1 Testing the Model: What Can we Learn From its Successes and Fail-
ures?

To assess the model’s performance in the experiment, we introduce the notion of a prediction
matrix.

Definition 1 Given N ∈ N subjects and M ∈ N predictions, a prediction matrix (Pij)
j=1,...,M
i=1,...,N

is a N ×M matrix where

Pij :=


1, j is true of i

0, j is false of i

NA, j is not applicable to i

.

A prediction matrix summarizes the model’s performance for each subject and each predic-
tion. For each subject i and each prediction j, Pij can take one of three values. If prediction
j is correct for subject i, Pij = 1. If prediction j is incorrect for subject i, Pij = 0. In either
of these cases, we say that prediction j is valid for subject i. If, however, prediction j cannot
be tested for subject i, either because an assumption that is needed to test it fails or because of
missing data, Pij = NA, we say it is invalid (for subject i in prediction j). For the assumptions
that each prediction requires to be declared valid, see Appendix A , specifically Table ??.

Given a prediction matrix, we can calculate how well the model describes the behavior
of each subject and its degree of success for each prediction, which leads to the following
definitions.

Definition 2 The model’s degree of success for subject i? ∈ {1, . . . , N} is defined as

Ci? :=

∑
{j:Pi?j 6=NA} Pi?j

|{j : Pi?j 6= NA}|

Definition 3 The model’s degree of success in prediction j? ∈ {1, . . . ,M} is defined as

Sj? :=

∑
{i:Pij? 6=NA} Pij?

|{j? : Pij? 6= NA}|

The model’s degree of success for subject i measures how well the model describes subject
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i’s behavior in the experiment when we restrict attention to valid predictions. The model’s
degree of success in prediction j is the percentage of subjects that conform to prediction j when
we restrict attention to valid predictions.

Table 3 summarizes how well the model accounts for the behavior of subjects in the ex-
periment. On average, we find that 62.4% of all valid predictions are correct. Once we split
the predictions between choice and time allocation predictions, we find that 66.2% of valid
choice predictions are correct whereas 59.5% of time predictions are correct. However, choice
predictions about dominated contracts follow from a simple dominance argument, because the
baseline contract awards lotteries that first order stochastically dominate the lotteries awarded
by dominated contracts no matter whether a subject succeeds or fails in the task. Therefore, any
reasonable model of choice between contracts should predict that the baseline is chosen over
a dominated contract, which implies that getting these predictions right only provides weak
evidence for the model’s predictive success. Once we exclude the choice predictions about
dominated contracts, we see that 52.4% of choice predictions are correct. This suggests that
the model fares better when predicting time allocations than choice, and, in fact, 83 out of 120
subjects are more consistent with the model in their time allocations than in their choices.

Table 3: Summary of Valid Predictions

Prediction Category All Choice Time Choice ND
Degree of success 62.4 66.2 59.5 52.4

There is considerable heterogeneity in the degree of success of the model across subjects ,
as shown in Figure 4. In this figure, for each individual, we present their degree of conformity
to choice, dots, and to time, triangles. What we do is rank each subject according to their degree
of conformity to choice prediction from lowest to highest and then for each subject present their
degree of conformity to our theory’s time prediction. This figure, then allows us to see, on
an individual level, how subjects differ in their degree of conformity to the time and choice
prediction of our theory.

While Figure 4 presents the model’s degree of success for each subject, Figure 5 presents
the model’s degree of success in each prediction. We can then check whether certain predictions
are more successful than others, which can help us identify when, and why, the model fails.

First, the predictions about dominated contracts are the most successful ones. This shows
that our subjects minimally understand the contracts and react to the incentives they provide.
Once we eliminate dominated contracts, we again see that the model fares better in predict-
ing time allocations than in predicting choices. Among the time predictions, the predictions
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Figure 4: Model’s Success by Subject (Dominance Excluded)

Time CR, Time RR, and Time DR are particularly successful. Recall that they test if subjects
allocate relatively more time to a contract of a given type if we increase its spread. For instance,
prediction Time CR tests whether contract C2 receives more time than contract C1, given that
it has a higher spread. The success of these predictions suggest that subjects indeed react to
spreads when allocating time, which corroborates one of the model’s main intuitions.

But, if this is so, what can explain the failure of predictions Time R2 and, specially, Time D2?
Moreover, as we show below, predictions about risk contracts and, especially, about confidence
contracts are very robust to the specification of preferences over contracts, but they still fail for
a significant we assume and it still fails to one third of our subjects.

The previous discussion suggests that two questions require closer scrutiny. First, why are
choice predictions less successful than time predictions? Second, do subjects understand the
relevance of spreads when allocating time?

Why Are Time Predictions More Successful Than Choice Predictions? One reason why
time predictions fare better, on average, than choice predictions is that some time predictions are
more robust than choice predictions, in the following sense. Time predictions would still hold
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Figure 5: Degree of Success by Prediction

for different types of preferences over contracts, whereas choice predictions are more sensitive
to the specific preferences over contracts we assume. In fact, 6 out of the 9 time predictions of
the model would hold for much more general preferences over contracts than the ones we use.

To illustrate, suppose that preferences over contracts are represented by the following utility
over contracts:

U(L|t) = ρ(α, t)V (LSolve) + (1− ρ(α, t))V (LNotSolve),

where ρ(α, t) : [0, 1] × R+ → [0, 1] should be interpreted as a decision weight, V is a func-
tional over lotteries, and LSuccess and LFailure are the lotteries one gets if one succeeds and fails
in solving the contract’s task. We show in Appendix A that if ρ(α, ·) is increasing, concave,
and continuously differentiable, the model’s time predictions about confidence and risk con-
tracts would still hold for several well-known functionals V , including functionals that allow
for different types of probability weighting (see Starmer (2000)). We also show in Appendix
A that, under the same assumptions on ρ(α, ·) , the model’s time predictions about confidence
contracts would still hold if we only assume that V is strictly increasing with respect to first
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order stochastic dominance.13

The same is not true for the model’s choice predictions: departures from expected utility
over lotteries can lead to very different predictions about choice behavior. Moreover, the choice
predictions about ambiguity contracts — Choice A1 and Choice A2 — rely on the auxiliary
model we postulate to resolve the ambiguity in the completion rate of the task.14 They also rely
on the auxiliary assumption that the confidence function is increasing in the completion rate
when t = 60, an assumption that we can only imperfectly verify. Therefore, it is difficult to
know whether the model’s relative poor performance in these predictions should be attributed
to the model itself, or to these auxiliary assumptions.

Moreover, the model’s choice predictions also depend on the subjects’ characteristics that
we elicit in Part III. Therefore, these characteristics are subject to measurement error (cf., Gillen
et al. (2019)). The most important among these characteristics is the value of the confidence
function when α = 0.5 and t = 60 , that is, p(0.5, 60). Given the way we elicit p(0.5, 60), we
can be over-estimating subjects confidence (Benoı̂t et al. (2022)), which might explain why the
prediction Choice C2 fails. However, measurement error provides — at best — a partial expla-
nation for the failures of the model. In fact, our model predicts that, if we ignore indifference,
either B should be chosen both over C1 and C2, or C1 and C2 should both be chosen over B.
Although this prediction unaffected by measurement error, only the choices of 49% of subjects
conform to it.

As we show in detail below, one important reason for the failure of the model’s choice
predictions is that failure payoffs matter much more than the model predicts when they are
too low. Subjects then avoid choosing such contracts, even if they offer higher spreads that,
according to our model, should compensate some types of subjects for the low failure payoffs.

The Attractiveness Bias and the Importance of Spreads When Allocating Time As you
recall, our time predictions rely almost exclusively on what we called the spread of a contract.
To investigate whether subjects do indeed pay attention to this spread, consider Figure 5 once
more. As we have seen, predictions Time CR, Time RR, and Time DR are particularly success-
ful. Given that the spreads of contracts C2, R2, and D2 are higher than the spreads of C1, R1,
and D1, this suggests that subjects react to the increase in the spreads of a contract, as predicted
by the model.

13 The preferences over contracts induced by U includes the broad class of biseparable preferences studied by
Ghirardato and Marinacci (2001).

14 See Appendix A, where we explain the model for the resolution of ambiguity we use. This model is also
necessary for the validity of our elicitation of subject’s attitude towards ambiguity, as discussed in Appendix B.2
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To check if this is so, we ran the following regression:

ti(LB ,LX) = β0 + β1

(
∆i
LB

∆i
LX
− 1

)
where for each subject i and X ∈ {C1, C2, R1, R2, D1, D2},15 ti(LB ,LX) is the amount of time

subject i allocates to contract LB in the pair (LB,LX), and
(

∆Li
B

∆Li
X

− 1

)
is the normalized ratio

of spreads for subject i.
For each pair (LB,LX), when the normalized ratio of spreads is 0 for subject i, that is, when

∆i
LB =∆i

LX , the model predicts that the subject should allocate the same amount of time to LB
and LX . Therefore, if the model is correct on average, we expect β0 = 60. We also expect
β1 > 0, because the model predicts that as the (normalized) ratio of spreads increases, subjects
should allocate more time to LB relative to LX .

Table 4 displays the results of the regression. The results show that, consistent with the
model, β1 = 10.77 > 0. This means that if the spread of LB is twice that of LX , then subjects
allocate roughly 11 more seconds to LB, which suggests that subject understand the importance
of spreads for time allocation. At the same time, β0 = 65.64, which is statistically greater than
60. The magnitude of β0 is puzzling given that the model predicts that the baseline contract
should receive less than 60 seconds in 5 out of the 6 pairs of contracts included in the regression.
Therefore, what is behind it?

Table 4: The Attractiveness Bias

Coefficient Robust Std. Err. p-value

Spread Ratio 10.77 2.47 0.00
Constant 65.64 1.37 0.00

The success of prediction Choice D2 and failure of prediction Time D2 suggest that, instead
of basing their time allocation exclusively on the ratio of spreads, subjects are allocating more
time to the contract they would choose in pair and, hence, find more attractive. We call this
pattern the attractiveness bias, and we conjecture that it is a particular case of a process Kah-
neman et al. (2002) call attribute substitution. When asked to allocate time between contracts,
a complex question, subjects substitute it by a simpler question, namely what contract they find
more attractive (and, hence, would choose). Their first instinct is then to allocate more time to

15 These are the pairs for which the model makes predictions about time allocation.
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the more attractive contract, but they adjust their initial instinct to take into account the spreads
of the two contracts.

To test whether the data supports the attractiveness bias, we ran a modified version of our
first regression, where we condition time allocation on the contract subjects choose in each pair:

ti(LB ,LX) =
∑

k∈{B,X,Indiff}

1i{Choice(LB,LX )=Lk}

[
βk0 + βk1

(
∆i
LB

∆i
LX
− 1

)]
,

where for each subject i and X ∈ {C1, C2, R1, R2, D1, D2}, ti(LB ,LX) is the amount of time

subject i allocates to contract LB in the pair (LB,LX),
(

∆i
LB

∆Li
X

− 1

)
is the normalized ratio of

spreads, and 1i{Choice(LB,LX )=Lk} is an indicator variable that, for each k ∈ {B,X, Indiff} , takes
value 1 when subject i chooses Lk, and 0 otherwise.

This regression amounts to running three separate regressions. One regression for the ob-
servations in which a subject chose the baseline contract. One regression for the observations
where a subject chose the other contract; and, finally, one regression for the observations in
which a subject declared to be indifferent between the two contracts. For each of these cases,
we estimate a simple linear regression between the time allocated to the baseline and the nor-
malized ratio of spreads. 16 For each pair (LB,LX) and for each k ∈ {B,X, Indiff} , the model
again implies that βk0 = 60 and βk1 > 0.

Table5 displays the results of the regression. Subjects that choose LB allocate, on average,
more time to LB than what the model predicts they should when the contracts have the same
spreads ( βB0 = 70.57 ). Similarly, subjects that choose LX allocate, on average, more time
to LX than what the model predicts when the contracts have the same spreads ( βX0 = 50.6

). Finally, subjects that declare indifference allocate roughly the same amount of time to both
lotteries ( βIndiff

0 = 57.73 ). Therefore, subjects allocate time in a way that seems to be consistent
with how they choose between - and, hence, value - the contracts.

When choosing the baseline contract or declaring indifference, subjects react to the increase
in the ratio of spreads as predicted by the model (βB1 = 12.35 and βIndiff

1 = 5.31 are statisti-
cally significant) but not when choosing the other contract in the pair (βX1 is not statistically
significant). Interestingly, when subjects choose the baseline contract but the model predicts
that they should allocate more time to the other contract, the ratio ∆LB

∆LX

must be sufficiently

16 In Appendix ???, we run separate specifications of this regression to take into account heterogeneity across
subjects and the existence of a non-linear relation between time allocated to the baseline and the ratio of spreads.
The qualitative results remain the same and, hence, we decided to include only this regression.

25



Table 5: The Attractiveness Bias

Coefficient Robust Std. Err. p-value

Time
Choose B 70.57 1.62 0.00
Indifference 57.73 3.83 0.00
Choose Other 50.60 1.91 0.00

Choice
Choose B 12.35 1.70 0.00
Indifference 5.31 2.58 0.04
Choose Other -1.26 1.38 0.36

small - namely, smaller than 1/6 - so that, on average, subjects allocate more time to the other
contract than to the baseline. No pair of contracts in the experiment has such a small ratio ∆LB

∆LX

,
which suggests that although subjects react to the ratio of spreads, they do not, on average, react
enough relative to the attractiveness bias.

5.2 Designing Cost-Effective Contracts to Compete for Time
We now explore what can Principal learn about designing contracts that can cost effectively
compete for an independent contractor’s time from our experimental results. Table 6 summa-
rize subjects’ choices and time allocations in the experiment. For each pair of contracts, the
left panel displays the percentages of subjects who chose the baseline contract (LB), who are
indifferent (‘Indifferent’), and who choose the other contract (Not LB). The right panel displays
the average amount of time subjects allocate to the baseline (LB) and to the other contract in
the pair (Not LB).

The contracts that we compare to the baseline contract are the result of varying some of the
baseline’s features so as not to increase the expected cost of implementing the contract, where
the expected cost of a contract L is defined as

EC(L) := α(pS ×H + (1− pS)× L) + (1− α)(pF ×H + (1− pF )× L). (4)

How effective are contracts that spreads probabilities while keeping expected costs constant?
That is, how effective are confidence contracts? Table 6 shows that confidence contracts are
effective when people must choose between contracts, but their effectiveness decreases if we the
spread in probabilities too much by reducing their failure payoff. Whereas 3 out of 4 subjects
choose LC1 over LB, less than 2 out of 4 subjects choose LC2 over LB . This suggests that
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Table 6: Choice and time allocation to contract pairs

Pairs Choice (percentage) Time (seconds)

LB Indifferent Not LB LB Not LB
B vs C1 17.5 10.0 72.5 51.9 68.1
B vs C2 43.5 11.6 44.9 48.6 71.4
B vs R1 36.7 11.7 51.7 54.1 65.9
B vs R2 52.5 5.83 41.7 54.6 65.4
B vs D1 93.3 3.33 3.3 78.9 41.1
B vs D2 95.8 0.83 3.3 73.0 47.0
B vs A1 33.3 31.7 35.0 60.1 59.9
B vs A2 53.3 20.8 25.8 62.6 57.4

although subjects are willing to trade-off a decrease in pF for an increase in pS , there are limits
to this willingness. In fact, a robust finding in our experiment is that, when choosing between
contracts, subjects shy away from contracts that offer too unfavourable outcomes if they fail the
task, i.e., with a low failure payoff , even if symmetrically compensated by a favorable outcome
if they succeed. That is, subjects find contracts that offer a poor safety net, unattractive when
choosing between contracts.

In time allocation, both LC1 and LC2 attract significantly more time, on average, than LB,
namely 68.1 and 71.4 seconds. This suggests, consistent with the model, that increasing the
spread of probabilities, i.e., increasing pS−pF , is effective in attracting people’s time. However,
the average amount of time subjects allocate to LC1 is not statistically different from the one
they allocate to LC2 , which suggests that perhaps subjects do not react to spreads as much as
the model predicts. To put matters into perspective, LB has a spread that is only 2 times than
that of the dominated contract LD1 , and subjects allocate, on average, 79 seconds to LB. LC2

has a spread that is 5 times higher than that of LB, and subjects allocate, on average, 71 seconds
to it.

The attractiveness bias can rationalize these patterns. Given that 72.5% of subjects choose
LC1 over LB and 44.9% choose LC2 over LB , the attractiveness bias then implies that subjects
allocate more time, on average, to LC1 relative to LB than the model predicts given their ratio
of spreads, whereas they allocate less time to LC2 relative to LB than the model predicts. This
makes the average amount of time allocated to LC1 and LC2 closer than what we expect given
the model. Moreover, given that 93.3% of subjects choose LB over LD1 , the attractiveness bias
can also explain why LB attracts more time over LD1 than LC2 over LB.
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Interestingly, we reach very similar conclusions about the effectiveness of spreading payoffs
while keeping the expected cost of the contract the same, that is, about the effectiveness of
risk contracts. 51.7% of subjects choose LR1 , whereas 36.7% choose LB, but only 41.7% of
subjects choose LR2 , whereas 51.7% choose LB. This again suggests that subjects shy away
from contracts that can result in outcomes that they deem too unfavorable if they fail even if
symmetrically compensated by a favorable outcome if they succeed. Moreover, although both
risky contracts attract more time than the baseline, LR2 attracts the same average amount of
time as LR1 . The attractiveness bias can again rationalize this pattern.

The spread of a contract in our model is the result of multiplying the spread in probabilities
with the spread in payoffs. We have seen that increases in either of these spreads that keep
expected costs constant are effective at attracting people’s choices and time, provided that we
do not increase the spreads too much. A natural question is then what would happen if we
increased both spreads?

If the principal is interested in maximizing the amount of time a contract attracts against a
baseline contract LB = (HB, LB, α, p

B
S , p

B
F ) while keeping constant expected costs, then our

model suggests that the principal should find a contract L = (H,L, α, pS, pF ) that solves

max
L

(H − L)(pS − pF )

subject to

α = αB

H > L > 0

pS > pF > 0

EC(L) = EC(LB)

(5)

Given the baseline contract we use in the experiment, any contract that solves this problem
is of the form H = x , L = 0, pS = 12/x , and pF = 0, for some x > 12. To fix ideas,
set x = 1. Our results suggest that such a contract will fair poorly in choice, and, due to the
attractiveness bias, will not attract as much time as we would expect. We should instead offer a
less extreme contract, say, one in which pS = 0.8 , pF = 0.2 , H = 10 and L = 2 .

Our model suggests that the Principal can compete against the baseline contract for people’s
time while reducing the expected costs of the baseline contract. One way to do so is to increase
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the spread in probabilities (pS − pF ) while decreasing the sum of these probabilities (pS + pF )
relative to the baseline. Since we increased the spread in probabilities, the model predicts that
subjects should allocate more time to the resulting contract than to the baseline. This is precisely
what dominated contracts do. As expected, dominated contracts LD1 and LD2 do much worse
than LB in choice: 93.3% of subjects choose the baseline contract over either of these two
contracts. What is surprising, at first, is that the baseline fares better in time allocation than
LD2 , although LD2 has a higher probability spread, namely (0.3− 0), than that of LB , namely
(0.6 − 0.4). But, again, the attractiveness bias rationalizes this pattern: LD2 is (much) less
attractive than LB , and, hence, subjects allocate (much) less time to it than the model predicts.

Finally, we arrive to ambiguous contracts. LA1 is chosen as often as LB, which indicates
that subjects are not, in general, averse to a small amount of (symmetric) ambiguity in the
completion rate. Nevertheless, when the ambiguity increases and we reachLA2 , subjects choose
LB twice as often than LA2 , which suggests again that people are averse to the possibility of
extreme unfavorable outcomes, such as the completion rate of the ambiguous contract being
0. Interestingly, both ambiguous contracts attract roughly the same time, on average, than
the baseline contract. For time allocation, therefore, ambiguity aversion seems not to affect a
subject’s decisions as much.

Therefore, our experimental result suggest three lessons for designing contracts to overcome
the contract-choice and contract-time allocation problems:

1. When allocating time, people consider not only a contract’s spread, as predicted by the
model, but also how attractive the contract is. The attractiveness of a contract can even
over-rule the logic of spreads. Therefore, to overcome the contract-time allocation prob-
lem, a contract should not only have high spreads but it should also be attractive;

2. When choosing, subjects avoid contracts with extreme unfavorable outcomes, e.g., that
pay very low prizes, or pay low prizes with certainty, or in which the completion rate
can be very low. Provided that when increasing the spread of probabilities, the spread
of payoffs, or ambiguity, we do not introduce these extreme unfavorable outcomes, the
resulting contract can overcome the contract-choice problem;

3. Putting (2) and (3) together, our results suggest that increasing the spreads in probabilities
or payoffs is a cost-effective way of competing against the baseline contract both for the
choice and the time of subjects provided that we do not introduce extremely unfavorable
outcomes when increasing spreads. Therefore, contracts that moderately increase either

29



one or both spreads can overcome both the contract-choice and contract-time allocation
problems.

6 Conclusion
This paper addresses an understudied problem: how principals write contracts for independent
contractors. Such contractors differ from regular employees in the sense that they are not en-
tirely reliant on the firm for their income and, unless incentivized, may divert their time to other
contracts that they have agreed to work on. The challenge for the principal is how to write a
contract that will not only be attractive enough to be chosen but, equally importantly, lead the
contractor to allocate time to it as a part of her contract portfolio.

Our findings highlight several key insights for designing effective contracts. First, the failure
payoffs play a critical role in the contract-choice problem. Contracts with too low a failure
payoff are less likely to be selected, even if they offer higher spreads. This indicates a potential
trade-off for principals in balancing between incentivizing time allocation and ensuring the
contract is chosen in the first place. Secondly, while higher spreads generally lead to more
time allocated to a contract, the “attractiveness bias” we observed suggests that people tend to
allocate more time to the contract they find more appealing at the choice stage. This behavior
can result in sub-optimal time allocation, which the theory does not capture.

Overall, our results suggest that successful contract design must consider both hard and
soft incentives and the behavioral tendencies of ICs. Principals must carefully calibrate failure
payoffs and spreads to address both the contract-choice and contract-time allocation problems
effectively. Moreover, understanding the attractiveness bias can help in designing contracts that
are not only chosen but also receive adequate time commitment.
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Appendices

A Derivation of the Predictions
In this section, we derive the formally derive the predictions of the model we used to struc-
ture the experiment. Recall that, given two contracts L1 and L2, L1 is chosen from the menu
{L1,L2} if, and only if,

p(α1, t1)∆L1 − p(α2, t2)∆L2 > NL2 −NL1 ,

and that the amount of time allocated to L∞ satisfies

p′(α2, T − tL1)
p′(α1, tL1)

=
∆L1
∆L2

.

We refer to the first expression and the Choice Formula and to the second expression as the
Time Allocation Formula in what follows.

A.1 Confidence Contracts
A confidence contract LC relative to LB is one in which HC = HB, LC = LB, αC = αB and

pCF < pBF < pBS < pCS .

Manipulating the Choice Formula, we get that LC is chosen from the menu {LB,LC} if,
and only if,

p(αB, t)

1− p(αB, t)
>
pBF − pCF
pCS − pBS

.

Since p(αB ,t)
1−p(αB ,t)

is an increasing function of p(αB, t), a sufficiently confident agent, i.e. one that
assigns a sufficiently high probability to solving the task, should choose LC over LB.

Manipulating the Time Allocation Formula, we get that the amount of time allocated to LC
satisfies

p′(T − tLC , αB)

p′(tLC , αB)
=
pCS − pCF
pBS − pBF

Since the left hand side is increasing on tLC and the right hand side is greater than one, we
conclude that tLC > T

2
. That is, the agent should always allocate more time to a confidence

contract. Moreover, the amount of time allocated to LC is increasing in pCS − pCF .
In the experiment, we use two confidence contracts , namely LC1 and LC2 (see Table 2). For
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both contracts, the model predicts that a subject chooses LCi
from the menu {LB,LCi

} if, and
only if, p

(
1
2
, 1
)
> 1

2
. The model also predicts that subjects should always allocate more time

to LCi
than to LB for each i ∈ {1, 2}, i.e., tLCi

> 60. Finally, given that pC2
S − p

C2
F > pC1

S − p
C1
F

, our theory predicts that agents should allocate more time to LC2 (relative to LB) than to LC1

(relative to LB), i.e., tLC2
> tLC1

.

A.2 Risk Contracts
A risk contract LR relative to LB is on in which pRS = pBS , pRF = pBF , αR = αB ,

LR < LB < HB < HR,

and HR −HB = LB − LR .
Manipulating the Choice Formula, we get that LR is chosen from the menu {LR,LB} if,

and only if,

K
(HR,LR)
(HB ,LB)(u) >

1−
(
p(αB, t)p

B
S + (1− p(αB, t))p

B
F

)
(p(αB, t)pBS + (1− p(αB, t))pBF )

,

where K(HR,LR)
(HB ,LB)(u) = u(HR)−u(HB)

u(LB)−u(LR)
measures the agent’s risk attitude (see Appendix ?). Define

q(αB, t) := p(αB, t)p
B
S + (1− p(αB, t))p

B
F ,

and LR is chosen from {LR,LB} if, and only if,

K
(HR,LR)
(HB ,LB)(u) >

1− q(αB, t)

q(αB, t)
.

Therefore, a sufficiently risk seeking agent will always choose LR.17 Similarly, a sufficiently
risk averse subject will always choose LB.18 Since the right hand side is a decreasing function
p(αB, t), for intermediate values ofK(HR,LR)

(HB ,LB)(u), the more confident a subject is, i.e., the higher
p(αB, t), the more prone she is to choose LR from {LR,LB}.

Manipulating the Time Allocation Formula, we get that the amount of time allocated to LR
satisfies

p′(T − tLR , αB)

p′(tLR , αB)
=
u(HR)− u(LR)

u(HB)− u(LB)
.

Since the left hand side is increasing on tLR and the right hand side is greater than one if we

17 This will happen whenever K(HR,LR)
(HB ,LB)(u) > pBS /p

B
F

18 In fact, this happens whenever K(HR,LR)
(HB ,LB)(u) <

pN,B

pS,B
.
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assume that u is strictly increasing, we conclude that tLC >
T
2

. That is, the agent should always
allocate more time to LR . Moreover, the amount of time allocated to LR is increasing in
u(HR)− u(LR).

In the experiment, we use two risk contracts, namely LR1 and LR2 (see Table 2). The model
predicts that a subject chooses LC1 from the menu {LB,LC1} if, and only if,

K
(10,2)
(8,4) (u) >

1− q(0.5, 60)

q(0.5, 60)
,

and chooses LC2 from the menu {LB,LC2} if, and only if,

K
(12,0)
(8,4) (u) >

1− q(0.5, 60)

q(0.5, 60)
.

The model also predicts that subjects should always allocate more time to LRi
than to LB for

each i ∈ {1, 2}, i.e., tLRi
> 60. Finally, provided that u(12)−u(0) > u(10)−u(2) , our theory

predicts that agents should allocate more time to LR2 (relative to LB) than to LR1 (relative to
LB).

A.3 Dominated Contracts
A dominated contract LD relative to LB is one in which HD = HB, LD = LB, αD = αB,

pTS < pBS and pTF < pBF .

Manipulating the Choice Formula, we get that LD is chosen from the menu {LB,LD} if, and
only if,

p(αB, t)

1− p(αB, t)
6
pBF − pTF
pTS − pBS

.

Since the left hand side is always positive p(αB ,t)
1−p(αB ,t)

and the left hand side is always negative,
then agents should never choose LD from the menu {LB,LD} .

Manipulating the Time Allocation Formula, we get that the amount of time allocated to LD
satisfies

p′(T − tLD , αB)

p′(tLD , αB)
=
pTS − pTF
pBS − pBF

Since the left hand side is increasing on tLD , if pTS−p
T
F

pBS−p
B
F
> 1, then tLD > D

2
. If pTS−p

T
F

pBS−p
B
F
< 1, then

tLD < D
2

. Moreover, the amount of time allocated to LD is increasing in pTS − pTF .
In the experiment, we use two dominated contracts, namely LT1 and LT2 (see Table 2).
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For both contracts, the model predicts that a subject should always choose LTi from the menu
{LB,LTi} . The model also predicts that subjects should allocate more time to LT2 than to LB
, i.e., tLT2 > 60, but should allocate more time to to LB than to LT1 , i.e., tLT1 < 60. Finally,
given that pT2S − p

T2
F > pT1S − p

T1
F , the model predicts that agents should allocate more time to

LT2 (relative to LB) than to LT1 (relative to LB), i.e., tLT2 > tLT1 .

A.4 Ambiguous Contracts
An ambiguous contract LA relative to LB is one in which HA = HS , LA = LS , pAS = pBS ,
pAF = pBF , but, for some ε > 0,

αA ∈ [αB − ε, αB + ε]

We postulate that the agent evaluates LA in two steps. She first resolves the ambiguity with
respect to αA, i.e. decides which one of the contracts in {Lx : x ∈ [α− ε, α+ ε]} she is facing,
and then evaluates the resulting contract using (1).

She resolves the ambiguity with respect to αA by substituting it by

αε := γε(αB + ε) + (1− γε)(αB − ε),

for some weight γε, which measures the agent’s ambiguity attitude.
Manipulating the Choice Formula, we get that LA is chosen from the menu {LB,LA} if,

and only if, p(αε, t) > p(αB, t). If we assume that p(·, t) is strictly increasing, we have that LA
is chosen from {LA,LB} if, and only if, αε > αB. Or, equivalently, if

γε > 1/2.

Therefore, LA is chosen from {LA,LB} if, and only if, the agent is ambiguity seeking (see
Appendix ?).

Manipulating the Time Allocation Formula, we get that the amount of time allocated to LA
satisfies

p′(T − tLA , αB)

p′(tLA , αε)
= 1

Therefore, predictions about time allocation rely the assumptions one willing to make about the
ratio of derivatives with respect to time evaluated at different completion rates. Since we refrain
in making such assumptions, we also refrain from making predictions about time allocation
between the baseline and the ambiguous lotteries.
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In the experiment, we use two ambiguous lotteries, namely LA1 and LA2 (see Table 2).
The model predicts that a subject should choose LAi

from the menu {LB,LAi
} if, and only if,

αεi > 0.5, i.e. if the subject is ambiguity seeking. The models makes no predictions about time
allocation.

A.5 The Model’s Predictions in the Experiment
Tables ? to ?? summarize the predictions that the model makes about the choice and time alloca-
tion of each subject for each type of contract. For confidence, risk, and dominated contracts, we
have 5 predictions per subject. For ambiguous contracts, we have only 2 choice predictions per
subject. Therefore, in total, we have 17 predictions per subject. Choice predictions, however,
depend on the successful elicitation of subject’s characteristics or on additional assumptions
being satisfied, which are also included in Tables ? to ??.
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Table 7: Confidence contracts - Predictions

(LB ,LC1
) (LB ,LC2

)

Choice C∗i

p(0.5, 1) > 0.5 iff {LC1}
p(0.5, 1) = 0.5 iff {LB ,LC1

}
p(0.5, 1) < 0.5 iff {LB}

p(0.5, 1) > 0.5 iff {LC2}
p(0.5, 1) = 0.5 iff {LB ,LC2

}
p(0.5, 1) < 0.5 iff {LB}

Time Ci

tLC1
> tLB

tLC2
> tLB

tLC2
> tLC1

*Assumption(s):
(i) Successful elicitation of p(0.5, 1)

Table 8: Risk contracts - Predictions
(LB ,LR1

) (LB ,LR2
)

Choic R∗i

K
(8,2)
(6,4) (u) >

1−q(0.5,1)
q(0.5,1) , iff {LR1

}
K

(8,2)
(6,4) (u) =

1−q(0.5,1)
q(0.5,1) iff {LB ,LR1}

K
(8,2)
(6,4) (u) <

1−q(0.5,1)
q(0.5,1) iff {LB}

K
(10,0)
(6,4) (u) > 1−q(0.5,1)

q(0.5,1) , iff {LR2
}

K
(10,0)
(6,4) (u) = 1−q(0.5,1)

q(0.5,1) iff {LB ,LR2}
K

(10,0)
(6,4) (u) < 1−q(0.5,1)

q(0.5,1) iff {LB}

Time Ri

tLR1
> tLB

tLR2
> tLB

tLR2
> tLR1

*Assumption(s):
(i) Successful elicitation of p(0.5, 1)

(ii) For (LB ,LR1
), the elicited u must satisfy u(10) > u(8) > u(4) > u(2)

(iii) For (LB ,LR2 ), the elicited u must satisfy 1 > u(8) > u(4) > 0

Table 9: Ambiguity contracts - Predictions
(LB ,LA1

) (LB ,LA2
)

Choice A∗i

α[0.4,0.6] > 0.5, iff {LA1
}

α[0.4,0.6] = 0.5 iff {LB ,LA1}
α[0.4,0.6] < 0.5 iff {LB}

α[0,1] > 0.5, iff {LA2
}

α[0,1] = 0.5 iff {LB ,LA2}
α[0,1] < 0.5 iff {LB}

Time Ai

— —

—
*Assumption(s):

(i) Successful elicitation of p(x, 1), for x ∈ {0.2, 0.5, 0.8}
(ii) p(0.8, 1) > p(0.5, 1) > p(0.2, 1)

Table 10: Dominated contracts - Predictions
(LB ,LR1

) (LB ,LR2
)

Choice Di {LB} {LB}

Time Di

tLR1
< tLB

tLR2
> tLB

tLR2
> tLR1
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A.6 Robustness of Time Predictions
The model’s time predictions about confidence and risk contracts would still hold for different
preferences over contracts. In fact, assume that subjects evaluate contracts using the formula

U(L|t) = ρ(α, t)V (LSolve) + (1− ρ(α, t))V (LNotSolve),

where ρ(α, t) : [0, 1]× R+ → [0, 1] should be interpreted as decision weight, V is a functional
over lotteries, and LSolve and LNotSolve are the lotteries one gets if one solves or does not solve the
task associated toL. Assume that ρ(α, ·) is increasing, concave, and continuously differentiable.
Taking first-order conditions of the time allocation problem

max
t∈[0,T ]

[U(LB|t) + U(LX |T − t)] . (6)

and assuming that α1 = α2 =: α, we get to

ρ′(α, T − tLB)

ρ′(α, tLB)
=
V (LBSolve)− V (LBNotSolve)

V (LXSolve)− V (LXNotSolve)
.

Assume first that, for some super-modular function f : [0, 1] × R → R, we have, for any
lottery (p,H; 1− p, L),

V ((p,H; 1− p, L)) = f(p,H) + f(1− p, L).

Recall that in the baseline, confidence, and risk contracts, pF = 1 − pS . Therefore, for confi-
dence contracts,

V (LBSolve)− V (LBNotSolve)

V (LCSolve)− V (LCNotSolve)
=

[f(pBS , H)− f(pBS , L)]− [f(1− pBS , H)− f(1− pBS , L)]

[f(pCS , H)− f(pCS , L)]− [f(1− pCS , H)− f(1− pCS , L)]
,

and, for risk contracts,

V (LBSolve)− V (LBNotSolve)

V (LRSolve)− V (LRNotSolve)
=

[f(pS, HR)− f(1− pS, HR)]− [f(pS, LR)− f(1− pS, LR)]

[f(pS, HB)− f(1− pS, HB)]− [f(pS, LB)− f(1− pS, LB)]
.

If f is super-modular, i.e., for every p1, p2 ∈ [0, 1] and x1, x2 ∈ R,

f(max{p1, p2},max{x1, x2})− f(p1, x1) > f(p2, x2)− f(min{p1, p2},min{x1, x2}),
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and this inequality is strict whenever (p1, x1) and (p2, x2) are not ranked by the component-wise
ordering of R2 , then

max

{
V (LBSolve)− V (LBNotSolve)

V (LCSolve)− V (LCNotSolve)
,
V (LBSolve)− V (LBNotSolve)

V (LRSolve)− V (LRNotSolve)

}
< 1,

and, hence, tLB < T/2.
As an illustration, assume that f(p, x) = w(p)u(x), wherew : [0, 1]→ [0, 1] and u : R→ R

are strictly increasing. We can think of w as a probability weighting function. Then, f is
super-modular. Therefore, time predictions about risk and confidence contracts are robust to
probability weighting.

Time predictions about confidence contracts also continue to hold provided that V is (strictly)
increasing with respect to first order stochastic dominance, because if %FOSD is the ranking of
lotteries according to first order stochastic dominance, then

LCSolve �FOSD LBSolve �FOSD LBNotSolve �FOSD LcNotSolve

Therefore, if V is strictly increasing with respect to first order stochastic dominance,

V (LBSolve)− V (LBNotSolve)

V (LCSolve)− V (LCNotSolve)
< 1,

and, hence, tLB < T/2.

B Further details on the experimental design

B.1 Maze selection
We employed an algorithm to generate mazes, focusing primarily what are referred to as “per-
fect” mazes—those characterized by having precisely one solution. The key parameters gov-
erning maze generation include width, height, Compactness Factor (CF), and Dead End Index
(DEI).

The width and height parameters dictate the dimensions of the maze, specifying the number
of cells it comprises. Meanwhile, the CF, serves as a metric for assessing maze compactness. A
maze with high CF value is indicative of a compact structure where the solution path is relatively
short in relation to the overall maze size. In contrast, a low CF value signifies a less compact
arrangement, with the solution path traversing a larger portion of the maze.
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The DEI quantifies the distribution of dead ends within a maze. A maze with a high DEI fea-
tures a dispersed arrangement of lengthy dead ends, resulting in a higher DEI value. Conversely,
a maze with a low DEI value exhibits a concentrated distribution of shorter dead ends.

All the mazes used in the paper where of size 20 by 20. We then varied the CF and DEI
to find mazes for which the competition rates required for our lotteries. A separate group of
subjects played number of different mazes with varying CF and DEI, and they were simply paid
for all the mazes they solved in a given time frame. We used these data to associate mazes to
our contracts. That is, if contract states a completion rate of .5, that contract would have a maze
for which 50% of the subjects had solved the maze by 60 seconds.

Figure 6 presents a sample screen for completing a maze. The subjects had to navigate the
blue square to the green dot by using keyboards up, down, left and right arrow keys.

Figure 6: Sample screen of a maze

B.2 Details of Part III: The Characteristics and their Measurement
In Part III of the experiment, we elicit the characteristics of subjects we need to test the predic-
tions of our model: confidence, risk, and ambiguity attitudes. We also elicited other character-
istics of our subjects.

B.3 Task 1: Confidence Attitude
The agent’s belief in his probability of success in a task associated with a contract, i.e., the
function p , plays a key role in our analysis. We now show that it can be used to define a notion
of (comparative) over-confidence.
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Suppose that a subject is told that 50% of people that tried were able to solve the task in
at most t minutes. An overconfident subject would then think: “Since I am usually better than
others on this task, if the average person solves the task with 50% probability, my probability
of solving the task is more than 50%.” An under-confident subject, on the other hand, would
think: “Since I am usually worse than others on this task, if the average person solves the task
with 50% probability, my probability of solving the task is less than 50%.” The next definition
formalizes this intuition.

Definition 4 Given t > 0 and a completion rate α, we say that a agent is over-confident at

(α, t) if p(α, t) > α; confident-neutral if p(α, t) = α; and under-confident if p(α, t) < α.

Given (α, t) ∈ [0, 1]× R+, we can elicit p(α, t) as follows. Consider the personal contract
L = (H,L, 1, 0, α, t). The value of this contract is

U(L) = p(α, t)u(H) + (1− p(α, t))u(L).

For each p ∈ [0, 1], define the contract Lp that pays the lottery Lp := (p,H; 1 − p, L) for sure
and and note that

U(Lp) = pu(H) + (1− p)u(L).

Assuming that u is strictly increasing, there exists a unique value of p? ∈ [0, 1] such thatU(L) =

U(Lp?). We then have that U(Lp) > U(L) if, and only if, p > p?.
We can thus bound p(α, t) through a multiple price list [INSERT REFERENCE]. More

specifically, we use a multiple price list with 11 lines, in which on every line ` ∈ {0, . . . , 10},
we ask the subject to choose between the L and the contract L0.1`. If at line `? ∈ {0, . . . , 10},
the subject switches from the choice of L to the choice of L0.1`? , then we know that

p(α, t) ∈ (0.1(`? − 1), 0.1`?].

B.4 Task 2: Ambiguity Attitude
Recall that given an ambiguous contract LA relative to LB , where αA ∈ [αB − ε, αB + ε], we
assume that the agent first resolves the ambiguity with respect to αA by substituting it by

αε := γε(αA + ε) + (1− γε)(αA − ε),

for some weight γε. Note that we can interpret γε as capturing the agent’s attitude to ambigu-
ity. We say that the agent is ambiguity-averse if γε < 1

2
; ambiguity-neutral if γε = 1

2
; and
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ambiguity-loving if γε > 1
2
.

In the experiment, we use a Multiple Price List to elicit bounds for αε . We use a straight-
forward modification of the procedure described above to elicit the confidence function p(α, t).

B.5 Task 3: Risk Attitude
We define the risk attitude by the agent’s preferences chooses between contracts and their ex-
pected values. Formally, given any contract F ∈ ∆(R), its expected value is given by EF (x).
We say that the agent is:19

1. Risk averse if, for every F ∈ ∆(R), U(EF (x)) > U(F );

2. Risk neutral if, for every F ∈ ∆(R), U(EF (x)) = U(F );

3. Risk seeking if, for every F ∈ ∆(R), U(EF (x)) 6 U(F ).

In our model, the decision-maker’s risk attitude is captured by the curvature of her (Bernoulli)
utility function u. Therefore, the decision-maker is risk averse if, and only if, u is concave; risk

neutral if, and only if, u is linear; and risk loving if, and only if, u is convex.
From now on we focus on a risk averse agent, but clearly the results are easily adapted to the

case of a risk neutral or risk seeking agent. Fix H1, H2, L1, L2 ∈ R with H2 > H1 > L1 > L2

and H2 −H1 = L1 − L2. Define

K
(H2,L2)
(H1,L1)(u) :=

u(H2)− u(H1)

u(L1)− u(L2)
.

Since u is strictly increasing, this is well-defined, and we have that K(H2,L2)
(H1,L1)(u) 6 1 whenever

u is concave. Moreover, given any strictly increasing concave function ϕ, we have that20

K
(H2,L2)
(H1,L1)(ϕ ◦ u) =

ϕ(u(H2))− ϕ(u(H1))

ϕ(u(L1))− ϕ(u(L2))
6
u(H2)− u(H1)

u(L1)− u(L2)
= K

(H2,L2)
(H1,L1)(u).

Hence, the more concave u is,21 the smaller K(H2,L2)
(H1,L1)(u) will be. Hence, K(H2,L2)

(H1,L1)(u) captures

19 We abuse notation and let EF (x) be the personal contract that pays EF (x) in all contingencies.
20 By the concavity of ϕ, whenever H2 > H1 > L1 > L2, we have that

ϕ(u(H2))− ϕ(u(H1))

u(H2)− u(H1)
6
ϕ(u(H1))− ϕ(u(L1))

u(H1)− u(L1)
6
ϕ(u(L1))− ϕ(u(L2))

u(L1)− u(L2)
.

21 Given two strictly increasing and concave functions u1, u2 : Rn → R, we say that u1 is more concave than
u2 if there exists a concave ϕ : R→ R such that u1 = ϕ ◦ u2.
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the degree of risk aversion of a risk averse agent. We can then test for risk aversion - and even
elicit its intensity - by eliciting u and calculating K(H2,L2)

(H1,L1)(u).
To elicit u, we follow the procedure in.Fix two payoffs L̄, H̄ ∈ R with L̄ < H̄ , and set

u(L̄) = 0 and u(H̄) = 1. To elicit x ∈ (L̄, H̄), notice that there exists a unique px ∈ (0, 1) such
that

u(x) = U(x) = U(Lx) = pxu(H̄) + (1− px)u(L̄) = px,

where Lx = (px, H̄; 1 − px, L̄) Therefore, to elicit u(x), we need to elicit the probability the
probability px that would make her indifferent between the contract (px, H̄; 1 − px, L̄) and
receiving x for sure.

To make the revelation of px incentive compatible, we use the BDM mechanism [INSERT
CITATION]. We ask subjects to state the value of px that would make them indifferent between
the contract (px, H̄; 1− px, L̄) and receiving x for sure. Suppose a subject states ps. We draw a
random number p uniformly from [0, 1]. If p 6 ps, then the subject wins x for sure. If p > ps,
the subject gets to play the contract (p, H̄; (1− p), L̄).

There are two pivotal cases. Suppose first that ps < p 6 px. The subject then plays the
contract (p, H̄; (1−p), L̄) which is weakly worse than what he would get if he stated px, namely
x. Suppose now that px 6 p < ps. Then, the subject receives x for sure, which is weakly worse
what he would get by stating px, namely the contract (p, H̄; (1− p), L̄). Therefore, stating px is
a weakly dominant strategy for the subject.

B.6 Tasks 4 to 8: curvature, risk, over-placement
Task 4 was included to provide us with an insight into the shape of our subjects’ “probability
of success function” which describes the probability of solving a maze with difficulty α as a
function of time. Such a function is an important part of our theory and we used Task 4 to gain
some insight into the shape (concavity or convexity) of such a function. This task is a modified
version of the procedure introduced in Avoyan and Romagnoli (2023).

Subjects were told that they would have 3 minutes to solve a maze but had to decide how
they would be paid for solving it. There are three options to choose from: Option A, Option
B and Option C. In Option A the subjects could earn $10 if they successfully solved the maze
in 2 minutes and $0 if they did not. In Option B, a fair coin will be flipped and if it lands on
Heads the subject will earn $10 if they have successfully solved the maze in 1 minute and $0
otherwise. If the coin lands Tails the subject will earn $10 if they solve the maze in 3 minutes
and $0 otherwise. They could choose Option C if they were indifferent between Option A and
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Option B.
In choosing their payment scheme our subjects reveal what they feel is the relationship

between their ability to solve a given maze and given the time. They are asked to choose
between a payment of $10 if they solve the maze in 2 minutes and a payment of $10 if they
solve the maze in a convex combination of times (1 minute and 3 minutes). This is comparable
to eliciting risk preference by offering a sure payment versus a convex combination of payments
with a fixed probability. If a subject’s probability of success function is concave then she would
prefer A to B and if convex the preference would be reversed. Linear function would elicit an
indifferent response.

Task 5 was a risk aversion elicitation task using a price-list procedure from Holt and Laury
(2002). Task 6 is a measure of subjects over precision (Moore and Healy (2008)), which elicits
a subject’s belief about how sure she is about the truth about a given objective fact such as the
distance of the moon from the earth. Subjects were asked how far the moon was from the earth
and were paid by how close their answer was to the truth. They were also asked what percentage
of subjects their answer was closer to the truth than. In other words, if they said 75% then they
believed their answer was closer to the true distance than 75% of other subjects. They were
rewarded for the accuracy of this guess.

Task 7 uses the task developed by Gneezy and Potters (1997) and Charness and Gneezy
(2010) to elicit a subject’s risk aversion by asking them to allocate 100 tokens between a safe
and risky option. The risky project has a 50 percent chance of success and returns two and a
half times the investment if successful, and nothing otherwise.

We included a second risk elicitation task for two reasons. First, in certain environments
it better correlated to subject behavior than the Holt and Laury (2002) price-list task. Second,
and more importantly, this task is necessary when combined with Task 8, to allow us to test
for compound lottery aversion. Task 8 repeats Task 7 but this time making the risky contract
a two-stage compound contract in an attempt to get an understanding for our subjects’ attitude
toward compound lotteries (this task is introduced in Agranov and Ortoleva (2017)). Subjects
with neither aversion nor attraction to compound lotteries should invest the same number of
tokens in both tasks. The subjects who dislike (like) compound lotteries will invest less (more)
in Task 8.
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