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Abstract

In this paper, we investigate market design for online gaming platforms. We ask

what motivates people to continue participation—success or failure? Using data from

an online chess platform, we find strong evidence of heterogeneous history-dependent

stopping behavior. We identify two behavioral types of people: those who are more

likely to stop playing after a loss and those who are more likely to stop playing af-

ter a win. We propose a behavioral dynamic choice model in which the utility from

playing another game is directly affected by the previous game’s outcome. We esti-

mate this time non-separable preference model and conduct counterfactual analyses to

study alternative market designs. A matching algorithm designed to leverage stopping

behavior can substantially alter the length of play.
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Keywords: Online gaming platform design, time non-separable preferences, his-
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1 Introduction
What determines our decision of when to stop a given endeavor? Does our past success
motivate the stopping decision, or is a failure the primary determining factor? This pa-
per focuses on the online gaming industry, specifically, we explore the motivation behind
stopping behavior using data from an online chess platform. The online gaming industry
generated $162.3 billion in revenue in 2020 and is predicted to reach an annual gross rev-
enue of $295.6 billion by 2026.1 In this context, we investigate whether wins or losses
influence people to play another game. Utilizing the identified behavioral patterns, we de-
velop a theory that offers insights into how to encourage or discourage users on the platform
from playing additional games.

We collect data from chess.com, the leading online chess platform boasting over 77
million users, where an average of 11 million chess games are played daily.2 We select a
random sample of users and scrape the entire history of their play for the years 2017 and
2018. Using the 2017 data and based on their stopping behavior, we identify 79% of the
players as behavioral types and the remaining 21% of the users as non-behavioral types.
Among the behavioral group, about 30% are win-stoppers (players who are substantially
more likely to stop playing after a win), and 70% are loss-stoppers (players who are sub-
stantially more likely to stop playing after a loss).3 When classifying the same players
using the 2018 data, we observe that their classifications remain stable over time for the
vast majority of individuals. That is, 76.4% of users are identified as being the same type
in 2017 and 2018. Since the user’s type seems consistent over time, the following pattern
might be relevant for various interventions: loss-stoppers play more when they win, while
win-stoppers play more when they lose. Consequently, by increasing or decreasing the
user’s chances of winning a game, the platform can alter the likelihood of the user playing
another game.

We develop a theoretical framework to further study and quantify the impact of chang-
ing the likelihood of winning for different types. Our model allows for time non-separable

1 Source: www.mordorintelligence.com and www.statista.com.
2 The top three most frequently visited chess sites, in order of popularity, are chess.com, chess24, and

Lichess. Our dataset includes users from 191 different countries; for a detailed country-level analysis, please
refer to Appendix K.

3 We refer to non-behavioral types as neutral types. These players are about equally likely to stop playing
after a win and after a loss (see Section 3.4.2 for a formal definition). The three types—win-stoppers, loss-
stoppers, and neutral types—are mutually exclusive and collectively exhaustive categories.
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preferences, in which future game utility can depend on the history of play.4 The structural
estimates from the model are consistent with the above-mentioned reduced-form evidence.
For some people, a loss in a given game decreases the utility of playing another game,
while for others, it increases the utility from playing another game. We show that matching
win-stoppers with, on average, more challenging opponents increases the average number
of games played.

We use the structural estimates to conduct counterfactual analyses, exploring the out-
comes of alternative matching algorithms and quantifying the effects of such alterations.
The platform currently prioritizes matching similarly rated players. Changing the matching
algorithm, resulting in changing the winning chances, impacts users’ continuation likeli-
hood. To illustrate, modifying a pairing that decreases a win-stopper’s winning percentage
from 50% to 45% (or 40%) results in a 4% (or 6%) increase in the average number of
games played during a session. Similarly, a pairing that increases a loss-stopper’s winning
percentage from 50% to 60% (65%) can increase the average number of games played by
a loss-stopper during a session by 1% (8%). To put these numbers in context, consider that
over the course of a year, a 5% increase in session duration translates to the average user
playing an additional 45 games, amounting to an extra 6 hours and 37 minutes spent on the
platform.5

Gaming platforms have several key objectives, including gaining and retaining user
popularity while generating profits through various channels such as in-app advertising,
subscriptions, and sponsorship. How could the platform use the information about the
users’ behavioral types to achieve these goals? First, increased user engagement in gaming
sessions presents more opportunities for the platform to display advertisements.6 Second,
an essential aspect of the online chess experience is the speed at which players are matched
with opponents. The platform’s ability to efficiently match players within their skill level
significantly impacts the user experience. The findings of our study can help platforms in-
crease market thickness by motivating players to play more, which is particularly important

4 See Braun et al. (1993) and Dragone and Ziebarth (2017) for evidence of time non-separable preferences
in aggregate consumption and novelty consumption, respectively. See Turnovsky and Monteiro (2007) for
the effects of consumption externalities under time non-separable preferences.

5 An increase in session length could cause several crowding-out effects. See Appendix E for a thorough
discussion of why an increase in the number of games will likely correspond to an increase in time spent on
the platform.

6 The game can be played on a computer (on the chess.com website) or a mobile app (chess.com app).
The website displays ads during the entire game on the sides of the screen. On the mobile app, it is displayed
after the game. In both cases, we presume that more games (weakly) increase ad consumption.
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during periods of low user activity online.
Our methodology is adaptable to other online platforms, provided two conditions are

met. First, there needs to be an environment in which a person repeatedly makes a decision.
Second, one needs a definition of what constitutes success and failure in a given environ-
ment. Under these two conditions, the methodology developed in the paper can be applied
to new data from these other settings. More generally, our findings could be applied in var-
ious other environments beyond online gaming. Consider the advantages of identifying a
student’s behavioral type, enabling educators or tutors to tailor the curriculum for improved
learning outcomes. For instance, students categorized as loss-stoppers might benefit from
a gradual introduction to new concepts, while those classified as win-stoppers might thrive
when presented with more significant challenges to sustain their interest. Observing and
identifying behavioral types in children could enable parents to frame problems in ways
that cater to their child’s personality, ultimately enhancing their chances of success. Our
approach takes the types as given and creates an environment that could benefit all types of
individuals.

2 Literature review
Fundamentally, this paper presents and estimates a dynamic discrete choice model in which
the agent may have time non-separable preferences over the stochastic outcomes of their
actions. In that sense, the application is analogous to the optimal stopping problems faced
by, for example, taxi drivers, whose decisions to end their shifts may be influenced by
their recent fares (see Camerer et al. (1997)).7 Recent empirical research on this topic is
complicated by spatial search frictions and is limited by the imperfect observability of both
decision-makers identities and histories of the outcome. In contrast, in the current paper,
the data allow us to observe the stopping decisions, outcomes, and independent realizations
of each agent’s decision problem. We take advantage of the rich data to demonstrate that an
agent’s decisions cannot be reconciled in a model without time non-separable preferences
and that there is substantial heterogeneity in preferences across players. By structurally
estimating a model with heterogeneous time non-separable preferences, this paper con-
tributes to a growing body of literature on structural behavioral economics (see DellaVigna
(2018) for a review of studies on structural estimation of behavioral models).

The paper also contributes to the literature on the source of motivation, particularly

7 See also Thakral and Tô (2021); Frechette et al. (2019); Farber (2005, 2008, 2015); Abeler et al. (2011);
Morgul and Ozbay (2015), and Cerulli-Harms et al. (2019)
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the effects of wins and losses on future behavior. The existing findings in this literature
are mixed. For example, Haenni (2019) and Cai et al. (2018) show that past failure has a
discouraging effect on amateur tennis players and workers, respectively. In contrast, in a
study of NBA and NCAA basketball players, Berger and Pope (2011) find an encouraging
effect of being slightly behind at half time. We deviate from this literature by focusing
on heterogeneity among players rather than an overall effect. We find that losses have
encouragement effects for some individuals and discouragement effects for others.

The paper is related to the literature on reference dependence—the effect, which has
been documented in various settings. For example, researchers have explored reference de-
pendence for cab drivers’ labor supply (Crawford and Meng (2011)), professional golf
players’ effort choice (Pope and Schweitzer (2011)), risky choices in the “Deal or No
Deal” game (Post et al. (2008)), domestic violence (Card and Dahl (2011)), and police
performance after a lower than expected pay raise (Mas (2006)). We examine two types
of reference dependence in the paper. First, we assume the reference point is a player’s
rating at the start of a session. Second, we assume the reference point is the expectation
of winning based on the opponent’s rating. That is, if the opponent has a higher rating,
the player is more likely to expect to lose and vice versa. We calculate the magnitudes of
these effects in our data, and we find that they are fairly limited—the reference dependence
effect magnitudes are roughly 17 to 70 times smaller compared to the impact of the last
game outcome.

Finally, the paper is related to studies using chess data. Researchers have used data
from chess games to study risk, time, and other behavioral preferences for different age
and gender groups.8 The closest parallel to the current study is a paper by Anderson and
Green (2018) in which the authors use data on blitz games played on thr Free Internet
Chess Server (FICS) between 2000 and 2015.9 The authors show that players are more
likely to stop playing after they set a new personal best rating. This is an interesting result;
however, players rarely set such records.10 Anderson and Green (2018) show that, players,

8 See the following recent papers that use chess data to study economic behavior: Gerdes and Gränsmark
(2010), Gränsmark (2012), Dreber et al. (2013a,b), Bertoni et al. (2015), Linnemer and Visser (2016),
De Sousa et al. (2021), and De Sousa and Niederle (2022).

9 On chess.com, blitz is a type of chess game in which each player has a specific amount of time (between 3
and 10 minutes) for the entire game. The blitz games analyzed in Anderson and Green (2018) lasted between
6 to 30 minutes.

10 On average, in our dataset, it takes a user 119 games to surpass their previously recorded personal best
rating. Further, more experienced users take longer to set new records. For example, users with at least 600
games take 275 games to reach a new personal best rating.
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on average, achieve a new personal best rating only twice every 15 years. In contrast, the
current study focuses on the impact of the previous game, which affects a user’s decision
after every game.

3 Data and descriptive results
In this section, we offer an overview of the chess.com platform, describe our data collection
process, and subsequently present descriptive results. We highlight patterns that suggest
history dependence and heterogeneity in stopping behavior. We conclude by providing
potential explanations for the observed behavioral types.

3.1 About chess.com
We scraped the data from chess.com, the world’s most popular online chess platform, cater-
ing to a diverse user base spanning from amateur enthusiasts to elite professionals. Notably,
Magnus Carlsen, the reigning World Chess Champion from 2013 to 2023, is among the
platform’s users. Chess.com offers free registration, enabling anyone to engage in matches
against human or computer opponents via the website or mobile app. Beyond gameplay,
users can access other resources, including chess lessons and puzzles, enhancing their chess
experience.

Upon registration on chess.com, a player is assigned an initial rating. During the data
collection period, the default starting rating was 1200.11 Subsequently, a player’s rating
adjusts following each rated game, considering the game’s outcome and the opponent’s
rating. Consequently, a player’s current rating serves as a reflection of their current pro-
ficiency in chess; a higher rating signifies greater skill.12 We recover the rating updating
mechanism from the data and it closely follows the rules stated on chess.com: “When you
choose to play a rated game with a specific time control (like 5 min), we try to find you an
opponent who is closest to your current rating.”

11 There was a change on chess.com regarding the initial rating assignment system, and now users can
choose to start from rating of 400, 800, 1200, or 1600 based on their chosen skill level.

12 The average rating in our sample is 1218, close to the initial rating. However, the majority of users in
our sample are highly active players. The median and the mean number of games played by the users in
both years are 2389 and 1206, respectively. Further, note that the rating reflects expertise conditional on
experience. For example, user A, who just joined the platform and has a rating of 800, is not the same as user
B, who has played 1000 games and has a rating of 800.

6



3.2 Data collection
We conducted our data collection in two phases. Initially, we gathered usernames from the
platform without imposing any restrictions on their history of play. Consequently, there are
some users in our sample that had not participated in any games during the year 2017. Ad-
ditionally, certain user accounts were either created but never used or used solely in years
beyond the scope of our study. Utilizing Python’s Selenium package and the chess.com
Application Programming Interface (API), we compiled a list comprising 1,793,473 user-
names.

In the subsequent step, we focused on collecting users’ game histories against human
players. To prevent potential issues with webpage access, we limited our analysis to a
subset of users. Our approach involved randomly selecting 1000 usernames at a time and
extracting their 2017 history of play using the chess.com API. We repeated this procedure
41 times. We then repeated the data collection process to gather the game histories of the
same users for the year 2018.

Each observation within the dataset contains information pertaining to the user and
game characteristics, including the username, the user’s self-identified country of associa-
tion, their platform rating, the game’s duration, the game type, which user had white pieces,
the game’s start and end times, and its ultimate outcome. For a summary of the dataset,
please refer to Table 1.

During the data cleaning phase, we excluded users who had not participated in any
games during 2017. Given our focus on relatively quick decision-making, we omitted
“Daily” games from the sample, since they are long and can extend over several days.
Additionally, we removed unrated games, accounting for 0.3% of the data. A game was
designated as unrated if any result of the game did not impact the users’ ratings. For the
analysis presented in Section 3.4, we did not impose any further restrictions on the data.
However, in instances where we introduced additional constraints during the analysis, we
have detailed those specifics within the respective sections.

18 In Section 3.3 we provide a formal definition of a session; alternative definitions and corresponding
results are in Appendix D.1.

19 The average number of sessions was calculated in two steps. First, we calculated the number of sessions
for each user in the data. Second, we averaged across all users. Similarly, the average session length and the
average rating were calculated in two steps.
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Table 1: Data description

Games 50,165,970 Average Number of Sessions 630
Sessions13 13,237,558 Average Session Length 5.11
Users 20,997 Average Rating14 1,218

Rated games 99.7% Pr(win | white pieces) 50.9
Game types: Pr(win | black pieces) 47.0

Blitz 71.9% Pr(win) 48.9
Bullet 21.7% Pr(loss) 47.9
Daily 2.2% Pr(draw) 3.2

Note: The top left quadrant presents the number of games, sessions, and users in
the sample. The top right quadrant presents per-user information on the number of
sessions played, session length, and user rating. The bottom left quadrant presents
the characteristics of games in the data set: the fraction of rated vs. unrated games,
and the fraction of the top 3 common game types. Finally, the bottom right quadrant
presents information on the outcomes of games and highlights the small percentage
(probability) of drawn games.

3.3 Definitions
A game g is a single game played against a human opponent. A collection of games ordered
by time stamp, (g1, g2, ..., gn), is called a session if no game was played T minutes before
g1 or after gn, and for any i ∈ {1, ..., n− 1}, the time between gi and gi+1 is less than T .15

We call sessions that contain only one game (n = 1) only-game (O-game). For sessions
with n ≥ 2, g1 is the first-game, gn is the last-game and any game between the first and
the last is referred to as the middle-game. Based on the terms defined above, we categorize
games into four mutually exclusive groups: only (O), first (F), middle (M) and last (L)
games.16

Let fW (·) be a function that calculates the winning percentage in a particular type of
game; for example, fW (L) is a user’s winning percentage in the last-games. In some cases,

15 For the main analysis we set T = 30 minutes; we then vary T to check the robustness of the results and
find no substantial differences. See Appendix D.1 for more details.

16 The procedure we used to label the games within a session involves two steps. The first step of handling
the data is removing daily games. The second step is to define sessions and label games according to def-
initions in Section 2.2 before cleaning the data any further. This way, we avoid a game being classified as
the last game of a session simply because the user changed the type of chess game they are playing. We find
that 96% of all sessions are homogeneous in terms of game type, and game length. That is, players do not
change the game type and the game time lengths within a session. Furthermore, among sessions that contain
at least one blitz game, 97.98% are homogeneous. In other words, if a session has one blitz game, in 97.98%
of times, all the games in that session are blitz games.
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when the context is clear, instead of writing fW (F ), fW (M), fW (L), fW (O), we write F ,
M , L, and O, to indicate the winning percentage in first, middle, last, and only-games,
respectively.

3.4 Descriptive results
We first establish that session-stopping behavior is history dependent. We then provide
evidence of heterogeneity in stopping behavior and define behavioral types.

3.4.1 History dependence

Consider a null hypotheses that a user decides to stop the game randomly, in other words,
stopping behavior is history independent:

H0: Users’ stopping behavior is independent of the outcome of the previous game.

In this case, the winning percentage in the last-games should be similar to the winning
percentage in any other type of game.

For each user, we calculated the winning percentages in the first, middle, and last-
games, as defined in Section 3.3. Figure 1 illustrates the relationship between the winning
percentages in last-games and middle-games with each point depicting one user (the solid
line represents the linear regression line).
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Figure 1: Winning percentage by game category

The null hypothesis H0 posits that the correlation between the winning percentages in
last-games and middle-games will be close to 1. We find it to be −0.49 and statistically
different from 1 with p < 0.001. Thus, at the aggregate level, the decision to stop is not
random and we reject H0.
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3.4.2 Behavioral types

We indeed reject the null hypothesis of history independence; however, the alternative
hypothesis does not elucidate the precise relationship between the outcome of the preceding
game and the decision to engage in another one. Further exploration is essential to discern
whether users exhibit a propensity to stop a session following a win or a loss.

A closer examination of Figure 1 reveals an intriguing pattern: certain individuals
demonstrate a considerably higher winning percentage in last-games compared to middle-
games, while others exhibit a notably lower winning percentage in last-games than in
middle-games. To unveil this heterogeneity and categorize users into distinct and exclu-
sive types, we introduce the following definition:

Definition 1 A user is a behavioral type at the tolerance level of τ and referred as:

• a win-stopper if fW (L) > fW (M) + τ , and

• a loss-stopper if fW (L) < fW (M)− τ .

A user is a non-behavioral type and referred as a neutral type if fW (L) ∈ [fW (M) −
τ, fW (M) + τ ].

We describe how we calculate fW (·) to unpack the above definition of behavioral types.
For illustrative purposes, we focus on fW (F ) for some user A. We take this single user’s
playing history for the year 2017 and look at every session this user has played that lasted
at least two games. For all these sessions, we examine the outcomes of only the first-games
they played and calculate the winning percentage by counting the number of wins. Say
player A played 500 sessions that lasted at least two games and won 225 of the first-games
of each session, so fW (F ) = 225/500 = .45. In a similar fashion, we calculate fW (M),
fW (L), and fW (O) for each user and each game type.

Now, note that fW (M) tells us a player’s winning probability in middle games, which
can be thought of as the player’s most typical games. If fW (M) = .5, roughly speaking,
the player wins 50% of the middle-games she plays. If the decision to stop the game is
random and does not dependent on the outcome of the previous game, then there should
be no difference between the winning probabilities in the middle- and last-games. Hence,
we should have fW (M) ≈ fW (L) ≈ .5. We say ≈ to emphasize that we allow for some
tolerance τ in Definition 1.

What does it mean if fW (M) = .5 but fW (L) = .25? Despite the ability to win 50%
of typical games, the player is more likely to stop when she loses, leading to fW (L) <

fW (M). Definition 1 would classify this player as a loss-stopper as long as τ < 25%.
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Finally, let us look at the decomposition of users into types using Definition 1. We
classify users into types using data from sessions that lasted two or more games. At a
tolerance level of τ = 7%, we find that 79% of users are behavioral types.17 That is for
79% of users in our data, the difference between their typical winning percentage and the
winning percentage in the last-game is at least 7%. Within this group of behavioral types,
about 30% are win-stoppers, and 70% are loss-stoppers.

Using a moderately conservative threshold (equivalent to one and a half standard devia-
tions of the winning probability distribution), a substantial portion of users exhibit history-
dependent stopping behavior. To demonstrate that the tolerance level is large enough and
the results are not driven by chance, we simulated data with a random stopping rule. In sim-
ulated data, each player plays the number of games that they play in our actual data. The
decision to stop or not is decided randomly with an equal chance. Simulated data shows
that if the stopping decisions were random, we would have classified 26% of the users as
behavioral types instead of 79%. This strong evidence warrants further investigations into
the existence and stability of such behavioral types.

3.4.3 Predictions

To further explore the existence of the behavioral types, we take Definition 1 to the extreme.
Let us assume that there are behavioral types such that a win-stopper always stops after a
win, and a loss-stopper always stops after a loss. This extreme definition has a number of
implications. That is, if there exist these behavioral types, we expect to see several patterns
in the data. We formulate them as predictions.

Prediction 1 The correlation between the winning percentages in last-games and only-

games is positive.

Prediction 1 follows from two observations. First, the winning percentage for win-
stoppers in both only and last-games must be 100. Second, the winning percentage for
loss-stoppers in both only and last-games must be 0. This is because if a win-stopper wins
the initial game, she ends the session, and the game is classified as an only-game. On
the other hand, if this user loses the first game, she will start another game, making this

17 One standard deviation in winning probabilities in any game in the data is around 4.7%. We do all
the analysis in the paper for tolerance levels of 5%, 7%, and 9%, which are around 1, 1.5, and 2 standard
deviations, respectively. For the main part of the paper, we present the results with a 7% tolerance level. See
Appendix D.2 and Appendix D.4 for the effect of changing the tolerance on behavioral decomposition and
structural estimates, respectively.
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session at least two games long; hence, the first game will be classified as the first-game
of a session and not as the only-game. Therefore, win stopper’s only-games are always
wins. In addition, whenever the extreme win-stopper wins, she ends the session, and we
classify that game as the last-game if the session is at least two games long. Therefore the
winning percentage in the last-games is 100. Following similar logic for loss-stoppers, we
get that the winning percentage for loss-stoppers in both only- and last-games must be 0.
The combination of these two observations across types and players leads to Prediction 1.

Figure 2a presents a scatter plot of the winning percentages in last-games and only-
games. A strong positive relationship between the two winning percentages implies that
individuals who are more likely to stop playing on a win (loss)–in other words, those who
have a high winning (losing) percentage for last-games–also have a higher winning (losing)
percentage in only-games, confirming the Prediction 1. Furthermore, we find that the win-
ning percentage for only-games is more than 25 percentage points higher for win-stoppers
(64.0%) than for loss-stoppers (38.8%). Given that the average winning percentage in all
games is 50.9% for win-stoppers and 50.4% for loss-stoppers, we can rule out the possibil-
ity that win-stoppers are simply better chess players.18

Prediction 2 The correlation between the winning percentages for first-games and last-

games is negative.

Let us examine the logic behind Prediction 2. If a loss-stopper wins the initial game,
she plays another one, and thus the initial game is classified as a first-game. In contrast, if a
loss-stopper loses the initial game, she stops playing, and thus the initial game is classified
as an only-game. Therefore, using the extreme types, a loss-stopper’s winning percentage
for the first-games must be 100, and by definition, the winning percentage for the last-
games must be 0. Similarly, for win-stoppers, the winning percentage in the first-games
must be 0, while the winning percentage in the last-games must be 100. The combination
of these two observations across types and players results in Prediction 2.

Figure 2b presents a scatter plot of winning percentages for the first-games and last-
games. A strong negative relationship implies that individuals who are more likely to
stop playing on a win (loss) have a lower winning (losing) percentage in the first-games,
supporting Prediction 2. Following a similar intuition as in Predictions 1 and 2, in Appendix
B we formulate and evaluate four other predictions about the relationships between the

18 Appendix G.1 presents winning percentages and standard deviations for each behavioral type and game
category. Further, Appendix I shows that there is no correlation between types and ratings.
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winning percentages in different types of games. Similar to Prediction 1 and 2, we find
strong evidence in support of the 4 additional predictions, further highlighting the core
findings on heterogeneous behavioral types.
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Figure 2: Winning percentage in different game types

3.4.4 Time stability of behavioral types

We have classified users into types using the 2017 data. Here we use the data for the
same users from the year 2018 and classify them again using Definition 1. For each user
we have two labels: classification from 2017 and 2018, respectively. We compare these
classifications and calculate the fraction of users for whom the classifications match. We
find a 76.4% match. Thus, 76.4% of users are identified as having the same type in 2017
and 2018. Furthermore, from the users identified as behavioral types in 2017, 84.5% of
them are classified as the same type using 2018 data. Figure 3a presents the transition
matrix between types from 2017 to 2018. Neutral types are most likely to experience a
shift in classification. This result is not surprising since the definition of types is based on
a threshold level, and most movement happens near this threshold.

While collecting the data, we did not place any restrictions on users’ history. Some
users played numerous games in 2017 and only a few in 2018, implying that the user’s
behavioral classification in 2017 is more accurate than the one in 2018 (due to the number
of observations for this user). In addition, some users started playing late in 2017 (and
therefore played few games) but played many games in 2018. We show that this data
limitation explains some of the movement between types, as observed in the transition
matrix. We re-do the above analysis on a subsample of users who have played at least 300
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Figure 3: Time stability of behavioral types

games both in years 2017 and 2018. Figure 3b presents the transition matrix between types
from 2017 to 2018. As expected, the more information we have on a user (more observation
per user for each year) more accurate the classification is; hence, the fewer transitions we
find between the categories. See Appendix D.5 where we examine the time consistency for
more active users.

As highlighted in Section 3.4.2, to ensure our results are not driven by chance and
low threshold level, we simulated data for the year 2018 as well with a random stopping
rule. We find that if the stopping rule was random, we would expect 74% of win-stoppers
and loss-stoppers to change their type from 2017 to 2018. Instead, we see that, 25% of
win-stoppers and 12% loss-stoppers transition between types.

3.5 Theories behind behavioral types
Before presenting our model, we explore potential explanations for the observed patterns of
two behavioral types in our data. Can reference dependence, fatigue, the gambler’s fallacy,
the hot hand fallacy, or learning account for these patterns? We begin with reference depen-
dence. One plausible explanation is that a user’s personal best rating serves as a reference
point: a user concludes a session when achieving a new personal best rating but continues
playing otherwise. While reference dependence can predict one type of behavior—ending
a session after a win—it falls short in explaining loss-stoppers’ behavior. Loss-stoppers’
patterns do not align with similar reference-dependent reasoning.

Now, consider the idea of users’ fatigue as they engage in successive games. Fatigue
might lead to a decline in performance. We observe lower last-game scores among loss-
stoppers, but the opposite holds for win-stoppers, who tend to achieve higher scores in their
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last game.
Next, let us explore two belief-based explanations: the gambler’s and the hot hand

fallacy.19 The gambler’s fallacy implies the regression of events to the mean; if something
occurs more frequently than usual during a given period, it will happen less often in the
future. This fallacy suggests that if a player wins several games in a row, they might
believe their chances of winning again are reduced, leading them to stop after a win. While
the gambler’s fallacy can explain patterns observed among win-stoppers, it contradicts loss-
stoppers’ behavior.

As for the hot hand fallacy, some athletes (and their fans) believe that after succeeding
several times in a row, they have a “hot hand” meaning they are more likely to succeed
in their next attempt. According to this belief, a player should continue playing after a
win and stop after a loss since it indicates the end of their “hot hand.” This reasoning can
explain the last game results of loss-stoppers but not win-stoppers.

Finally, let us turn to the concept of learning in games literature, which draws from the
reinforcement learning literature in psychology (a meta-analysis of learning literature in
public good games by Cotla (2015) examines other possible learning models and suggests
that learning aligns more closely with reinforcement learning as opposed to belief-based
or regret-based learning.). Research has shown that in repeated games, choices that yield
higher payoffs in the past are more likely to be chosen in the future (e.g., Roth and Erev
(1995), Erev and Roth (1998), Chen and Tang (1998), and Haruvy and Stahl (2012)). If
a player plays online chess primarily for the pleasure of winning, they are more likely to
continue after a win and stop after a loss. This is similar to the evidence from reinforcement
learning literature in psychology, where the “Win-Stay, Lose-Shift” strategy is documented
in many environments, such as repeated games Posch (1999), sports Tamura and Masuda
(2015), and even among dogs Byrne et al. (2020). This perspective could explain the
behavior of loss-stopper types.

To summarize the discussion above, it can very well be that the entire population is
a mixture of people who follow or fall into different theories or principles. In this paper,
we refrain from taking a stance on the specific underlying psychological forces driving
such behavior. Instead, we propose an approach that accommodates win-stoppers, loss-
stoppers, and neutral types within the same model, focusing on outcomes and accounting
for heterogeneity.

19 Miller and Sanjurjo (2018) found evidence suggesting that the hot hand fallacy might not be a fallacy in
the context of basketball free throws.
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4 The Model
In this section, we initially present the model featuring three distinct player types. Subse-
quently, we provide an overview of our identification strategy.

4.1 Description
Here we outline a chess player’s dynamic decision-making process. Let yt denote the
player’s rating at time t, which is observable to the player, the player’s opponent, and the
econometrician. We assume that the player’s rating yt belongs to a finite space denoted as
Y . There are three distinct player types: win-stopper (θW ), loss-stopper (θL), and neutral
(θN ). Let Θ = {θW , θL, θN} be the set of all types and let θ be an element of this set.
Importantly, a player’s type remains fixed over time.

A player’s type profile at time t, denoted as (yt, θ), consists of the player’s time-variable
characteristics, yt, and a static, unobservable type θ. To denote current states, we use
variables without time subscripts, while we employ “prime” superscripts to represent states
in the subsequent period.

Each period, a player faces the following decision: considering the outcome of the
previous game, the player’s type, and their current rating, they must decide whether to
engage in another game or opt for the outside option by going offline. Prior to making
this decision, the player evaluates their expected utility from participating in an additional
game, which is calculated as follows:

U(θ, y, χ) = u(y) + (1− χ)lθ (1)

where θ is the player’s type, y is the player’s current rating, χ is the outcome of just con-
cluded game, and lθ is the magnitude of the effect of the previous game outcome.20 Note
that lθ can vary based on type θ ∈ {θW , θL, θN}, allowing for asymmetric effects (not
restricting lθW = −lθL). If a player won just concluded game (χ = 1), the utility from
playing another game is u(y). This term quantifies how much the player enjoys playing
chess independently of their type. In the event of a loss in the previous game, the player’s

20 Our model only considers wins and losses, omitting draws. While draws are more common in classical
chess, they are less frequent in fast chess. In our data, only 3.2% of the games ended in a draw. We treated
draws as wins if they occurred against stronger opponents (players with higher ratings) and as losses if they
occurred against weaker opponents. As a robustness check, we also estimated our model by excluding games
that ended in a draw, and our estimation results remained unaffected by this change.
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utility from playing another game is contingent on their type.

Definition 2 A player is a behavioral type if lθ > 0 or lθ < 0. She is

• a win-stopper if lθ > 0, and

• a loss-stopper if lθ < 0.

A player is a neutral type if lθ = 0.

There is an outside option, c, which is independently drawn from a distribution with
density f(c) in every period. If a player ends a session, she takes the outside option c. If
the player does not end the session, her utility is U(θ, y, χ) from playing a new game and
she moves to the next period. At this point, the player faces the same decision with updated
game history incorporating the result of the just concluded game that she played (χ′). In
each period, following the conclusion of a game, a player’s decision problem gives rise to
the following Bellman equation:

V (θ, y, χ, c) = max
{
c, u(y) + (1− χ)lθ + δ

∑
y′,χ′∈

Y×{0,1}

p(y′, χ′|y)V (θ, y′, χ′)
}
, (2)

where δ is the discount factor and p(y′, χ′|y) is the joint probability of the player receiving
(transitioning to) the rating y′ and the outcome of the next game being χ′, conditional on
the player’s current rating y. We have:

p(y′, χ′|y) =
∑

y−i∈Y

p(y, y−i)p(y
′|y, y−i, χ

′)p(χ′|y, y−i) (3)

where p(y, y−i) is the probability that a player with rating y, is matched with a player with
rating y−i; p(y′|y, y−i, χ

′) is the probability of receiving (transitioning to) rating y′ given
that the player’s current rating is y, in the next game she is matched with a player with rating
y−i, and the outcome of the next game is χ′. Note that we recover p(y, y−i), p(y′|y, y−i, χ

′),
and p(χ′|y, y−i) from the data. In our counterfactual analysis, a player-to-player matching
mechanism, p(y, y−i), is a lever market designers can use to influence a player’s decision
to start a new game.

4.2 Identification
The identification and estimation of the theoretical model follow the tradition of Hotz and
Miller (1993). We show that we can forgo numerical dynamic programming to compute
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the value functions for every parameter vector and we propose an estimation procedure that
is simple to implement and computationally efficient. More details and most of the proofs
are relegated to Appendix A.

We begin by identifying behavioral types. First, we establish that an optimal stopping
rule is a threshold rule. Subsequently, we demonstrate that these thresholds exhibit the
following characteristics: i) they are higher after a loss than after a win for win-stoppers,
ii) they are lower after a loss than after a win for loss-stoppers, and iii) they are equal after
a loss and after a win for neutral types. This outcome implies that, for a given player,
comparing the probability of ending a session after a win to the probability of ending it

after a loss allows us to determine the player’s behavioral type.

Claim 1 The optimal stopping rule is a threshold rule in c.

Proof. Note that in equation (2), continuation values do not depend on the current real-
ization of c. Hence, fixing the continuation values and current period utility from playing
another game, the second term under the max operator is lower than the outside option, c,
for sufficiently high c. Thus, we have a threshold, c̄(θ, y, χ), above which the player stops
playing and takes the outside option.

Therefore, c̄(θ, y, χ) is a threshold such that a player with type profile (θ, y) who has
an outcome χ in the last game ends a session if and only if the realized c is at least as large
as c̄(θ, y, χ). Recalling equation (2), we have,

c̄(θ, y, χ) = u(y) + (1− χ)lθ + δ
∑
y′,χ′∈

Y×{0,1}

p(y′, χ′|y)V (θ, y′, χ′) (4)

The following proposition leads to the identification of behavioral types.

Proposition 1
i) c̄(θW , y, 0) > c̄(θW , y, 1);

ii) c̄(θL, y, 0) < c̄(θL, y, 1);

iii) c̄(θN , y, 0) = c̄(θN , y, 1).

Proof. The proof follows from equation (4) and definition (2).
Proposition 1 suggests that the probability of win-stoppers choosing to play another

game is greater when they lost the previous game compared to when they won, and con-
versely for loss-stoppers. Meanwhile, for neutral types, the probability of continuing the
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session remains consistent, regardless of the last game’s outcome. Building on Proposition
1, we can determine a player’s behavioral type from the data by examining their stopping
probabilities following wins and losses. We use the data to recover winning and matching
probabilities.

To identify the remaining parameters of the model, we make an assumption regarding
the parametric distribution of the outside option, opting for an exponential distribution for
the estimation process.21 With this assumption in place, we identify both lθ and the value
associated with continuing a session based on the stopping probabilities following wins and
losses.

A player’s value function relies on both the values associated with continuing a session
and the parameter of the outside option distribution. Provided that we identify the value
from continuing a session and we normalize the distribution parameter, we identify the
value functions. Finally, we show that δ and the utilities from playing a game are identified
using the player’s value from continuing a session and her value function. For more com-
prehensive information on the identification process, along with relevant claims and their
corresponding proofs, please refer to Appendix A.

5 Estimation and counterfactual analysis
In this section, we first provide further details on restrictions imposed on the data for struc-
tural estimation. Subsequently, we present the outcomes of the structural estimation and
conduct a counterfactual analysis.

5.1 Preliminaries
We impose two restrictions on the sample.22 First, we consider blitz games to ensure a
more uniform time spent per game. Secondly, we focus on games where the users’ pre-
game rating falls within the range of 1000 to 1600. This range selection is informed by the
average and standard deviation of the blitz ratings in the data.23 The second condition is
imposed to ensure that users ratings are reasonably close. This serves two purposes: firstly,
we avoid matching users with significantly different ratings, and secondly, it helps mitigate

21 We select the exponential distribution since it imposes no additional implicit assumptions beyond being
a continuous distribution on (0,∞). This is due to the fact that exponential distribution represents the distri-
bution with maximum entropy among the class of continuous distributions on (0,∞) with a given mean (see
Theorem 3.3 in Conrad (2004)).

22 Structural estimation results using the complete data can be found in Appendix D.3.
23 The average blitz rating is 1303, with a standard deviation of 324. We round these figures to 1300 and

300, respectively, resulting in the rating range [1300-300, 1300+300].
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missing values in the rating transition matrix.24 After applying these restrictions, our data
comprises 9,192,795 observations from 10,395 unique users.

The next step in the structural estimation analysis involves partitioning the rating range
into grids. To achieve this, we utilize the average rating change as a guideline. In the
primary data, the average rating increase following a win is 8.02 points, while the average
decrease after a loss is 7.97 points. Consequently, we segment the rating space [1000,
1600] into 8-point intervals, yielding a total of 75 grids.

Proposition 1 suggests that for neutral types, the stopping probability is the same af-
ter both wins and losses. However, for practical empirical analysis, we redefine neu-
tral types as users whose stopping probabilities after wins and losses are κ-close, that is
|Pr(Stop|Win) − Pr(Stop|Loss)| ≤ κ. Similarly, we modify the win-stopper and loss-
stopper definitions such that a user is a win-stopper if Pr(Stop|Win)−Pr(Stop|Loss) >
κ and a loss-stopper if Pr(Stop|Win) − Pr(Stop|Loss) < −κ. In this section, we use
κ = 0.07. Appendix D.4 presents the estimation results using κ = 0.05 and κ = 0.09.
Appendix D.2 presents the results of the model type decomposition as κ is varied between
0 and 0.2.

5.2 Structural estimates and counterfactual analysis
Our estimation strategy parallels the identification proof outlined in Appendix A. Recall
equation (1), the expected utility from playing an additional game. Let us focus on pa-
rameters: lθ for θ ∈ {θW , θL, θN}, which represent the additional utility associated with
the outcome of the previous game. Table 2 presents the estimates of lθ for each type. To
ensure stability of the results, we bootstrap the data 300 times (see Appendix G.2 for the
distribution of the point estimates).

Table 2 reveals notable differences. For win-stoppers, the utility from playing another
game is 0.678 higher after a loss compared to after a win, as expected. This boost in
expected utility for win-stoppers in the subsequent games after a loss (χ = 0) is in contrast
to the lower expected utility after a win (χ = 1). On the other hand, for loss-stoppers, the
expected utility from playing another game is 0.610 lower after a loss compared to after a
win. For neutral types, the result of the last game has no sizable effect on their utility.

24 Consider a user with a rating of 700. In our dataset, it is improbable that this user has ever played against
an opponent with a rating of 2000. When calculating the potential new rating for a user with a rating of 700
after playing against a user with a rating of 2000, we need to consider all such games in the dataset. However,
since there may not be any single game with such a vast rating difference, we encounter missing values. To
minimize estimation errors, we limit our analysis to games for which we have a sufficient quantity of data.
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Parameter Mean SD

lθW 0.678 0.005
lθN -0.014 0.003
lθL -0.610 0.002

Table 2: Bootstrapped values for lθ

Now, we move to address the question of how the expected session length is affected
when we modify the probability of winning by adjusting the matching algorithm on the
platform. Figure 4 illustrates the percentage change in the average session length (x-axis)
in response to alterations in the winning percentage (y-axis), resulting from changes in the
matching algorithm. The red solid line represents a winning percentage of around 50%.
According to the definition of behavioral types, a decrease in the winning percentage for
win-stoppers and an increase in the winning percentage for loss-stoppers should lead to
longer average session lengths. Figure 4 validates this intuition and quantifies the effects.
When we alter the matching algorithm to pair win-stoppers (triangles in Figure 4) with
increasingly higher-rated opponents on average, their winning percentage decreases, but
the average session length increases.

Figure 4: Winning percentage and percentage change in session length
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The x-axis presents the percentage change in average session length,
and y-axis depicts change in the winning percentage, which in turn is
a result of changing the matching algorithm. The winning percentage
against a similarly rated player is around 50% (the red solid line).

For win-stoppers, using a matching process that decreases the winning percentage from
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50% to 45% increases the average session length by 3.75%. Using a matching algorithm
that drops the winning percentage to 40% increases the average session length by around
6%. Similarly, for loss-stoppers, using a matching algorithm that increases the chances of
winning from 50% to 60% increases the average session length by 1%. Using a matching
process that increases the winning percentage from 50% to 65% increases the average
session length by more than 7.5%.

In the sample with sessions with only blitz games, an average user played 274 sessions
per year. An average session lasted about 3.29 games and the average blitz game lasted 7
minutes and 29 seconds. Thus, over one year, a 5% increase in session length results in
an average user playing 45 more games or spending 6 hours and 37 minutes longer on the
platform.

It is important to highlight that more games do not have to translate into an extended
time on the platform. One could further argue that asymmetric matching in ratings could
even reduce the length of a game since a strong player could win the game faster against a
weaker player. We explore these concerns in detail in Appendix E. In particular, Appendix
E.1 shows that the median correlation between minutes spent on a session and the number
of games played during the session is 0.98 across users. Appendix E.2 displays the corre-
lation between opponents’ rating difference and how much time the game lasts is close to
zero. We conjecture that the observed high correlation between the number of games and
time on the platform and close-zero correlation between rating difference and playing time
is due to the nature of blitz games, which by definition, are time-constrained. Taken all the
evidence together, we conclude that more games might result in more time spent on the
platform.

The effects of practice and welfare discussion Let us explore a positive externality
associated with playing more games: the impact of practice on a user’s rating, which serves
as a proxy for skill and is a socially desirable outcome. We analyze the highest rating
achieved by a user in 2017 and the total number of games they played during the same
year. A linear regression (see column (1) in Table 10, Appendix J for details) reveals a
significant positive association between the number of games played and a higher rating.

To account for player-specific variations, we employ a Fixed Effects (FE) panel data
estimation method. We define a unit as a month in the 2017 data. For each month, we
calculate the number of games played and the highest achieved rating, resulting in 12 ob-
servations per typical player. The FE estimation, with the total number of games in a month
as an independent variable and the highest rating achieved as the dependent variable, reaf-
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firms the positive relationship between practice and skill improvement (see column (3) in
Table 10, Appendix J).25 Furthermore, we find that both win-stoppers and loss-stoppers
experience similar effects from practice, suggesting that neither behavioral type holds a
distinct advantage in skill development (see column (4) in Table 10, Appendix J).

The above discussion raises questions about the implications of extending time on the
platform on overall welfare. Increasing the time spent playing can be seen as beneficial for
the platform, as it leads to more user engagement, and for users themselves, as it enhances
their skill levels. However, we acknowledge that total welfare can be influenced by by other
factors not included in our model.

Our model assumes that players derive utility from playing another game and does not
consider potential negative effects of extended play. For instance, increased time on the
platform might reduce a player’s productivity if that time was originally intended for work
or study. In this paper, we simplify our analysis by excluding such concerns. Nevertheless,
future research could explore the unintended consequences of longer play in more detail.

6 Other factors influencing stopping decision
Up to this point, our focus has centered on the influence of the just completed game’s out-
come on the decision to play a new game. In this section, we consider additional factors
that could potentially affect stopping decision. To assess these factors, we employ a Cox
Proportional-Hazards (CPH) model, which enables us to examine how various characteris-
tics, referred to as covariates, impact the session-stopping rate, also known as the hazard
rate. This approach allows us to analyze the influence of specified factors on whether a
session concludes or persists.

We employ a CPH model that incorporates time-dependent covariates. The general
form of this model is outlined as:

hj(t, xj(t)) = h0(t) exp {xj(t)
′β}. (5)

Equation (5) breaks down as follows: the left-hand side (LHS) signifies the risk that
game j, in period t, characterized by xj(t), marks the end of the session (i.e., the session
concludes after this game). The right-hand side (RHS) of the equation comprises of two
elements: baseline risk and relative risk.

25 It is worth highlighting that most of our players are not top professional chess players. For professionals,
practice might only help a little since they could have reached the limits of their abilities.
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The baseline risk, denoted as h0(t), represents the risk of a game being the final game
in a session when all covariates are set to zero (xj(t) = 0). The relative risk, expressed
as expxj(t)

′β, quantifies the proportional increase or decrease in risk associated with the
covariates specified in xj(t).

We aim to find whether factors beyond the outcome of the just completed game and a
user’s behavioral type influence the decision to stop. Prior to evaluating additional covari-
ates, we estimate the model with three variables: the outcome of the just completed game, a
user’s behavioral type, and the interaction of the two variables. To ease the interpretation of
the results, we assume there are no neutral types and that we only have two types of users:
win-stoppers and loss-stoppers. Table 3 presents the results of the CPH estimation. The
variable Outcome takes a value of 1 if a user won the game and 0 otherwise. The variable
Type is assigned a value of 1 for win-stoppers and 0 for loss-stoppers. Consequently, the
baseline for the estimation is a loss-stopper who experienced a loss in the game.

Table 3 reveals that for win-stoppers, the hazard rate is higher after a win than after
a loss. This is evident in the estimates. After a win, the hazard rate is lower by 0.17

(−0.58−0.69+1.10= −0.17) compared to the baseline (which, in the estimation, is a loss-
stopper who lost the game). After a loss, hazard rate is lower by 0.69 compared to the base-
line. In simpler terms, for win-stoppers, the probability of ending a session is lower after
a loss than after a win, as expected. Conversely, for loss-stoppers, we observe the opposite
relationship. A win in the just completed game reduces the hazard rate by 0.58 compared
to a loss (baseline). The importance of those coefficients is easier to comprehend using
the information provided in the third column: exp(Coef). In particular, if exp(Coef) = 1,
it implies that a given variable has no impact on the decision to end the session, while
exp(Coef) being higher or lower than 1 indicates, increased or decreased chances of end-
ing a session, respectively. For example, the value of exp(Coef) for the Outcome variable is
0.56, signifying that a loss-stopper is 44% ((1− exp(Coef))·100%) less likely to conclude
the session after a win than after a loss.
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Covariate Coefficient (Coef) Exp(Coef) p-value

Outcome -0.58 0.56 < 0.005

Type -0.69 0.50 < 0.005

Type × Outcome 1.10 3.01 < 0.005

Table 3: Cox Proportional Hazards Model with Type Heterogeneity

Now that we have re-affirmed our results from previous sections using CPH analysis,
we add other variables that we hypothesize may affect the stopping behavior. We consider
the outcome in the game before the just completed game, the opponent’s rating, the user’s
initial rating, and two interaction terms. In what follows, we provide a motivation for why
we consider these covariates.

The outcome of the game before the just completed game (named previous outcome)
could potentially impact stopping decisions. For instance, some users might be more in-
clined to stop after experiencing two consecutive wins, as opposed to just one, while others
may be more likely to stop playing after enduring two consecutive losses.

Another factor that might sway a user’s decision to stop is their initial rating within a
session. If a user’s stopping strategy entails concluding a session once their current rating
surpasses their initial session rating, then the rating difference between the first and last
games of a session becomes significant. Including this variable and its interaction with
the Outcome variable helps us discern if there exists reference dependence concerning the
initial rating and if users react differently when the same rating change is achieved after a
win or after a loss.

We have also incorporated the opponent’s rating into our analysis, driven by the idea
of reference dependence. Winning against a stronger opponent might be more satisfying
than winning against a weaker one. On the other hand, losing to a weaker opponent may
feel like a greater setback than losing to a stronger one. In other words, winning against a
weaker opponent is typically expected, so losing in such a scenario might be seen as a more
significant failure. To assess whether and to what extent winning or losing against oppo-
nents of varying strengths affects stopping decisions, we introduced the “opponent rating
difference,” which measures the disparity in ratings between the two users. By including
the “opponent rating difference” and its interaction with the Outcome we can control if the
outcome of the just completed game has a different effect for a given type if that outcome
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is achieved against a stronger or weaker opponent.

Figure 5: CPH coefficients for win-stoppers and loss-stoppers
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The coefficients represent the quantitative relationships between the variables and the session-stopping
rate as per the Cox proportional hazards (CPH) model. These coefficients indicate whether a variable
tends to increase or decrease the likelihood of ending a session. A positive coefficient suggests an
increase, while a negative coefficient suggests a decrease in the session-stopping rate compared to the
baseline conditions. The magnitude of these coefficients is standardized to represent the strength of the
effect in standard deviations, allowing for meaningful comparisons among different variables.

Figure 5 provides a visual illustration of the results when we include all the variables
together in the CPH analysis (see Appendix F for the CPH results when we add variables
one at a time). To ensure that the coefficients of these variables are easily comparable,
we standardized both the rating change and opponent rating difference variables to have
a mean of 0 and a standard deviation of 1.26 We can easily see from Figure 5 that the
magnitude of the effect of the Outcome is much larger for both win-stoppers and loss-
stoppers than all the other variables we consider. This result highlights the fact that, the
outcome of just completed game carries the most substantial effect. This is not to suggest
that the platform should ignore additional factors that influence a user’s decision to play
another game. Instead, we emphasize that, in terms of magnitude, the outcome of the just
concluded game carries the most sizable effect.

26 Standardization ensures that if the effect of the rating change is 15 times smaller than the effects of the
last game result, it is expressed in terms of 15 standard deviations (which corresponds to approximately a
1080 rating point difference) rather than 15 rating points.
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7 Conclusion
This paper explores previously undocumented behavioral type heterogeneity in stopping
behavior. We investigate stopping behavior on an online chess platform, shedding light on
the factors influencing individuals’ stopping decisions. Leveraging rich data spanning two
years from chess.com, we categorize 79% of users as behavioral types, while the remaining
21% are considered non-behavioral (neutral) types. Among the behavioral types, one-third
fall into the win-stopper category, with the remainder classified as loss-stoppers. Win-
stoppers tend to halt their play after a win, while loss-stoppers are more inclined to stop
after a loss. We then explore how platforms can utilize knowledge of user types to alter the
number of games played.

While the paper focuses on chess games on one platform, the model and the descriptive
analysis can be applied to other environments as long as they satisfy two main conditions.
First, there needs to be an environment where individuals repeatedly face a similar decision
(for example, to play another level of the same game, or to accept another passenger’s
request for pick-up as a ride-share driver). Second, the outcome and wins/losses must be
well-defined (won/lost the new level).27 For instance, this framework is applicable to many
mobile games as they fulfill the conditions above.

It is crucial to note that for meaningful counterfactual analyses, the platform must have
some control over altering chances of whether a user succeeds or fails.. On chess.com,
where game difficulty and rules are fixed, modifying winning probabilities involves influ-
encing potential opponents’ strength by adjusting the matching algorithm. In other games
with variable difficulty levels or hints, the platform can alter the winning probabilities by
modifying the underlying difficulty or providing hints. In the case of ride-sharing platforms
such as Uber and Lyft, the driver’s type could be how their stopping decision is affected by
tips or the expected length of a ride. Then, the labor supply can be increased by using the
information on riders’ tipping behavior (or their expected length of the ride) and matching
suitable riders with the driver. Future research can explore data from diverse environments
to identify similar heterogeneous behavioral types. Additionally, investigating whether a
person’s behavioral type remains consistent across various settings could yield intriguing
insights.

27 In the case of drivers on ride-sharing apps, it is not straightforward to define what would constitute a win
or a loss. Receiving a tip or not is one of the possibilities. Other options could be the expected length of the
ride or the drop-off location.
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A Identification proofs
The following parametric assumption is made on the distribution of the outside option,
F (c),

Assumption 1 F (c) is an exponential distribution with parameter λ.

We now argue that under the Assumption 1 and by normalizing one parameter of our
choice in the model, we can identify δ, lθ and u(·). Let,

H(θ, y) = u(y) + δ
∑
y′,χ′∈

Y×{0,1}

p(y′, χ′|y)V (θ, y′, χ′). (6)

Under the Assumption 1 and from equation 4, the probability of stopping and taking
outside option, h(θ, y, χ), can be written as,

h(θ, y, χ) = e−λ(H(θ,y)+(1−χ)lθ) (7)

Claim 2 λH(θ, y) and λlθ are identified for all (θ, y).

Proof. Let us look at equation (7) evaluated at χ = 1. The LHS, h(θ, y, 1), can be directly
calculated from the data as probability of stopping after a win. In the RHS, the second term
in the power, (1− χ)lθ, is 0. Therefore, we can recover/identify λH(θ, y) from (7).

Next, let us look at equation (7) evaluated at χ = 0. The LHS can be calculated from
the data as probability of stopping after a loss. In the RHS, H(θ, y) term was identified in
the first part of the proof. Thus, λlθ is identified from (7) as well.

Claim 3 λV (θ, y, χ) are identified for all (θ, y, χ).

Proof. With a little abuse of notation let us denote c̄(θ, y, χ) by c̄. We can rewrite (2) as,

V (θ, y, χ, c) = 1(c > c̄) ∗ c+ 1(c ≤ c̄)
(
H(θ, y) + (1− χ)lθ

)
, (8)

where 1(·) is an indicator function. Taking expectations of both hand sides of (8) with
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respect to c gives,

V (θ, y, χ) = E(c|c > c̄) + Pr(c ≤ c̄)
(
H(θ, y) + (1− χ)lθ

)
= Pr(c > c̄)

(
E(c) + c̄

)
+ Pr(c ≤ c̄)

(
H(θ, y) + (1− χ)lθ

)
= Pr(c > c̄)

(1
λ
+ c̄

)
+ Pr(c ≤ c̄)

(
H(θ, y) + (1− χ)lθ

)
= Pr(c > c̄)

(1
λ
+ c̄−H(θ, y)− (1− χ)lθ

)
+H(θ, y) + (1− χ)lθ. (9)

Multiplying both hand sides by λ and substituting c̄(θ, y, χ) from expression (4) we get,

λV (θ, y, χ) = e−λ[H(θ,y)+(1−χ)lθ] + λH(θ, y) + (1− χ)λlθ. (10)

Claim 2 and expression (10) imply that λV (θ, y, χ) are identified for all (θ, y, χ).

Claim 4 δ and λu(y) are identified.

Proof. We can consider the difference λ(H(θ, y) −H(θ′, y)) for some θ ̸= θ′. This gives
us,

δ =
λ(H(θ, y)−H(θ′, y))

λ(
∑

y′,χ′∈Y×{0,1} p(y
′, χ′|y)(V (θ, y′, χ′)− V (θ′, y′, χ′)))

.

By claims 2 and 3, numerator and denominator are identified in the above equation. Finally,
we can identify λu(y) from,

λu(y) = λH(θ, y)− λδ
∑
y′,χ′∈

Y×{0,1}

p(y′, χ′|y)V (θ, y′, χ′)

Finally, we can identify all the parameters and value functions by normalizing λ.28 This
completes the identification of the parameters of the model.

28 In the structural estimation, we normalize λ = 1.
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B Further predictions
Following a similar intuition as in Predictions 1 and 2, we derive additional predictions.
We expect the correlation between winning percentages for the last-games and the middle-
games to be negative; between winning percentages for the middle-games and the only-
games to be negative; between winning percentages for the first-games and the only-games
to be negative and finally, between winning percentages for the middle-games and the first-
games to be positive. Figure 6 presents the correlation matrix with p-values in parentheses
and the data support all the predictions.

Figure 6: Correlation Matrix
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C Consistency of behavioral types
In this section, we discuss the consistency of the two behavioral classifications. In this
paper we propose two distinct definitions of behavioral types (Definitions 1 and Definition
2). The two classifications are intuitively related, but do not necessarily overlap. That is,
given some data, a user can be classified as a win-stopper according to Definition 1, but
be identified as a loss-stopper by the model (Definition 2 based on Proposition 1). For
example, consider a user whose complete playing history consists of the following set of
three sessions:

{WWWW,WLW,WLL}.

According to Definition 1, the user is classified as a win-stopper because she won last-
games more often than middle-games. For this user, the stopping probability after a loss
is Pr(Stop|Loss) = 1/3 and the stopping probability after a win is Pr(Stop|Win) = 2/7.
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Given that the probability of stopping is higher after a loss than after a win, Pr(Stop|Loss)
> Pr(Stop|Win), our model would identify the user as a loss-stopper. The fact that one
definition does not necessarily imply the other strengthens any relationship we find between
the two classifications, thus highlighting the consistency between our intuition and the
proposed theory. Let us compare the two classifications.

For 84.6% of the users the two classifications match. This result provides strong evi-
dence that the model captures users’ behavior and that the game outcome affects the utility
of the next game. Figure 7 presents a transition matrix for model types and behavioral
types. We observe a large mass on the diagonal, indicating that the two classifications
are fairly consistent. For example, 91% of win-stoppers identified by the model were also
identified as win-stoppers under Definition 1. However, there are some mismatches; for
example, some neutral types by Definition 1 are classified as behavioral types by the model
and vice versa. Notably, cases in which a win-stopper (loss-stopper) under Definition 1 is
identified as a loss-stopper (win-stopper) by the model are rare, occurring only about 1%
of the time.
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Figure 7: Model vs. Data Types

More generally, we can derive mathematical conditions when the two classifications co-
incide. We can modify Definition 1 to include first- and only-games and compare Pr(Win|Stop)
to Pr(Win|Continue). The former corresponds to the fraction of wins in all the games
after which the person stopped (it could be the last-games or only-games). The latter cor-
responds to the fraction of wins in all the games after which the player played at least one
more game (it could be first-games or middle-games). Similarly, we can rewrite Definition
2 to compare Pr(Stop|Win) with Pr(Stop|Loss). Using conditional probability rules, one
of the ways to represent the condition when two classifications coincide is, if the follow-
ing holds (depending on a reader, one might rearrange terms in the conditional probability
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formula to make them more intuitive to understand):

Pr(Continue|Win)

Pr(Stop|Loss)
=

Pr(Continue)

Pr(Stop)
(11)

Fixing the right-hand side of equation 11, if the win affects positively to continuation
probability, then loss should affect positively to stop in order for the two classifications
to coincide. Similarly, if the win negatively affects continuing, then the loss should also
negatively affect stopping. Roughly speaking, we will have the same classifications by two
definitions if both win and loss symmetrically affect the stopping decision. In other words,
if the stopping decision is affected, for example, only by a win and is random after a loss,
two definitions might give different classifications.

D Robustness

D.1 Changing session definition—varying break time
In the main body of the paper, while defining a session, we set the break time T to 30 min-
utes. To ensure that the results on the behavioral types are not sensitive to the choice of T ,
we classify users into types using sessions defined by break times T ∈ {5, 15, 30, 60}. We
are interested in how the behavioral type classification changes and the transition between
the different T s. Figure 8 presents transition matrices.

In Figure 8 we see a large mass on the diagonal, which implies that the classifications
mostly match. However, there are some mismatches; for example, some neutral types with
T = 5 are classified as behavioral types with T = 15. What is noteworthy in the panel are
the transitions between behavioral types: 0% of users are classified as a win-stopper (loss-
stopper) by one classification and a loss-stopper (win-stopper) by another classification or
vice versa. There are no switches in behavioral types as we vary T ∈ {5, 15, 30, 60}.

D.2 Robustness to tolerance thresholds
Unless we stated otherwise, throughout the paper, we set tolerance levels τ and κ to 7%.
We vary τ and κ from 0 to .2 and we classify our users into types according to Definition
1 and model identification. Figure 9 presents the users’ population decomposition by types
with τ ∈ [0, .2] and κ ∈ [0, .2]. While there is movement in a predicted direction—higher
the threshold, less behavioral types—we see that types are overall robust to changing the
allowed tolerance (no abrupt, unexpected discontinuities).
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Figure 8: Transitions between 5 to 15, 15 to 30, 30 to 60, and 5 to 30

D.3 Full data structural estimation results
To show that estimation does not depend on the grid size or data range, we change both
and compare the results. We divide the rating range into grids of 20 since the rating has a
wide range ([100, 2798]). We have few observations where the rating is below 600 or above
2000. Consequently, we place all the users with a rating below 600 in the first rating grid
and those above 2000 in the last rating grid (grid 71). We divide the rest of the rating range
into 20 point intervals.

The main parameters that we focus on are lθ for θ ∈ {θW , θL, θN}. The estimates
are presented in Table 4. We bootstrapped 300 times to find standard deviation of the
parameters. Table 4 shows that parameter estimates as well as their standard deviations are
similar to the ones in Table 2 in Section 5.2. Hence, parameter estimates are stable with
respect to rating range and the grid size.

Parameter Mean SD
lθW 0.665 0.004
lθN −0.017 0.002
lθL −0.604 0.002

Table 4: Bootstrapped values for lθ
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Figure 9: Type Decomposition

(a) lθW (b) lθN (c) lθL

Figure 10: Distribution of bootstrap values for lθ for full data.

D.4 Robustness with respect to behavioral type tolerance level
From the definition of behavioral types, it is clear that estimates of lθ for θ ∈ {θW , θL, θN}
depend on behavioral type tolerance level. In the main text all our results are for κ = 0.07.
In this section we present estimation results for two other values κ = 0.05 and κ = 0.09.

Parameter Mean SD
lθW 0.622 0.004
lθN −0.005 0.003
lθL −0.580 0.002

(a) τ = 0.05

Parameter Mean SD
lθW 0.737 0.005
lθN −0.027 0.003
lθL −0.642 0.003

(b) τ = 0.09

Table 5: Bootstrapped values for lθ

Table 5 shows that parameter estimates changes in the expected direction. For example,
when we relax non-behavioral (neutral type) constraint from κ = 0.07 to κ = 0.09, there
are less behavioral types. Therefore, the users who are still behavioral types with κ = 0.09,
are the ones who are “more behavioral” then the one with κ = 0.07. This implies that
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(a) lθW (b) lθN (c) lθL

Figure 11: Distribution of bootstrap values for lθ (τ = 0.05).

(a) lθW (b) lθN (c) lθL

Figure 12: Distribution of bootstrap values for lθ τ=0.09.

the effect from the last game result (whether negative or positive) is stronger for those
behavioral types. This comparative static is met in our estimates. Win-stoppers’ parameter
lθW is lower for κ = 0.05 and higher for κ = 0.09 compared to κ = 0.07. Similarly,
for loss-stoppers the absolute value of lθK is lower for κ = 0.05 and higher for κ = 0.09

compared to κ = 0.07.

D.5 Time consistency for more active users
Let us look at the level of time consistency between the years 2017 and 2018, as we look
at players with at least 150, 300, 450, and 600 games in both years, 2017 and 2018. As
we remove users with less than 150, 300, 450, and 600 games in both years, the sample is
reduced by 7%, 11%, 12%, and 11%, respectively. The matching between the years 2017
and 2018 increases as we look at more active users. Specifically, as we look at users with
at least 150, 300, 450, and 600 games in both years, the matching is 78%, 79%, 80%, and
81%, respectively. The transition between the behavioral types is in Figure 13.
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Figure 13: Sub-samples of users with at least 150, 300, 450, and 600 games each year

E Possible crowding-out effects
Our counterfactual analysis reveals that considering users’ behavioral type for the matching
algorithm can increase the average number of games played during a session. One might
think of several crowding-out effects that an increase of a session length might have. With-
out a randomized controlled trial (RCT) we can not fully address such concerns; however,
we provide evidence that some of these effects are not likely.

E.1 More games lead to more time on the platform
The goal of the counterfactual analysis is to increase the number of games during a session,
but the market designer’s goal could also be to increase the time spent on the platform.
We calculated the correlation for every individual between minutes spend on the platform
during a session and the number of games played in the same session. Figure 14a shows that
correlation between these two variables is high. The median correlation between minutes
and games during the session is 0.98 across users.

E.2 Asymmetric matching does not decrease playing time
Another issue that one might worry about is that asymmetric matching can cause fast
games, in the sense that stronger users can win faster playing against weaker users. To
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Figure 14: Correlations

(a) Minutes spent on a session and number of games (b) Minutes spent on a game and rating difference

show that this is not likely to be an issue, we calculate the correlation between rating dif-
ferences and minutes spent on a game. Rating difference provides a measure of how much
better one user is compared to another. Figure 14b shows a correlation between how much
better an opponent is and how much time the game lasts is close to zero for most cases.

E.3 One long session can cause the next session to be short
One might worry that if a session time increases during the day, it can decrease the next
session length (if users set out a certain amount of time to spend on the platform every day).
We find that the correlation between the number of sessions played during a day, and the
average length of a session is 0.0002. We also find that the session length of the previous
session does not have any explanatory power on the length of the next session.

E.4 Users adjust game type based on the time they have played
The last issue that we discuss here is changing the type of the game. A person who started
a session with a 5-minute blitz game can play a shorter last game (for example 3-minute
game) because she has only a certain time allocated on the platform. If that is the case,
we should see that people change game types during the session. We find that 96% of
sessions are homogeneous in the sense of the game type. This homogeneity captures not
only a change of game type in the last game but during any other time. This makes our
argument even stronger that users do not choose the last game type based on the remaining
time allocated for playing chess that day.
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F Additional CPH model analysis
To demonstrate the stability of the Outcome variable as a main contributor to the stopping
decision we conducted CPH analysis by adding all the variables sequentially. For readabil-
ity, we separated Win-Stoppers and Loss-Stoppers to avoid an extra layer of interactions
with behavioral types. The table 6 confirms the main findings from Figure 5. The out-
come variable is stable and does not change substantially across different models neither
for Win-Stoppers nor for Loss-Stoppers.

Win-Stoppers Loss-Stoppers

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Outcome 0.54∗∗∗ 0.54∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.56∗∗∗ -0.65∗∗∗ -0.65∗∗∗ -0.66∗∗∗ -0.65∗∗∗ -0.65∗∗∗ -0.65∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Rating Change -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ -0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Opponent Rating Diff -0.03∗∗∗ -0.03∗∗∗ -0.03∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00 0.00 0.03∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Previous Outcome -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗ 0.06∗∗∗ 0.06∗∗∗ 0.06∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Rating change × Outcome 0.01∗∗∗ 0.01∗∗∗ -0.00 -0.00∗

(0.00) (0.00) (0.00) (0.00)

Opp. Rating Diff. × Outcome -0.05∗∗∗ -0.06∗∗∗

(0.00) (0.00)

N 8,175,464 16,463,457

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 6: Sequentially adding variables to CPH model for Win-stoppers and Loss-stoppers.
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G Additional tables and figures

G.1 Winning percentage and game type

Types O F L M All
Loss-Stopper 38.5 56.7 35.9 59.2 50.4
Neutral 50.6 50.0 50.2 50.6 50.5
Win-Stopper 64.3 43.7 65.6 43.6 50.7

(a) Winning percentage

Types O F L M All
Loss-Stopper 10.93 8.36 8.85 7.59 3.53
Neutral 9.53 6.86 5.70 5.15 4.21
Win-Stopper 13.79 9.05 10.53 7.59 4.15

(b) Winning percentage st. deviation

Table 7

G.2 Distribution of bootstrap values for lθ

(a) lθW (b) lθN (c) lθL

Figure 15: Distribution of bootstrap values for lθ

H The effect of the opponents’ rating and strength
Let us only look at games in which the difference between the own and opponent’s ratings is
less than 200, 100, 50, and 10. Additionally, let us include unrestricted data for comparison.
Table 8 presents the results. Table 8 suggests that the fraction of behavioral types and the
composition of behavioral types (fraction of win-stoppers compared to loss-stoppers) are
fairly unaffected as we restrict the data. It is worth noting that we drop a significant fraction
of the data when restricting the difference to less than 10 rating points. Yet, the results on
behavioral types and their ratios stay consistent.

Finally, let us evaluate the effect of interaction between the opponent’s strength and the
stopping decision. We calculate stopping probability after a win and after a loss based on
whether the user faced a stronger or weaker opponent. The results are presented in Table
9. The users are marginally more likely to stop a session after winning against a stronger
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Fraction NR < 200 <100 <50 <10
Behavioral types 78.5 78.9 78.9 78.9 79.9

Loss-stoppers 55.1 55.4 55.2 55.3 55.6
Win-stoppers 23.4 23.5 23.6 23.6 24.3

Neutrals 21.5 21.1 21.1 21.1 20.1
Reduction in obs NA 2% 12% 30% 77%

Table 8: Restricted data by rating difference

player. However, the differences based on the opponent’s rating appear to be fairly small.
Note that the overall probability of stopping is higher after a loss than after a win. This is
due to the fact that there are more loss-stoppers than win-stoppers.

Loss Win
Stronger 0.294 0.241
Weaker 0.296 0.236

Table 9: Conditional stopping probabilities

I Rating and behavioral type
In this section, we examine whether a user’s type is correlated with the type classification.
In particular, whether a user with a higher rating is more likely to be one type. To study this
question, we restrict our data, focusing on users with an average rating of over 1,800 (619
users). Among these users with the best rating, 81.9% are behavioral types. The ratio of
win-stoppers among the behavioral types is 32.7%, similar to the full data ratio of 29.8%.
A hypothesis that we may observe more of one of the behavioral types among higher rated
users, for example, more of win-stoppers, has little support in our data.

J Practice improves rating
Here we ask, does practice make better? That is, we examine whether playing more games
leads to higher ratings. Table 10 presents the results of regression summaries for different
specifications and models. We find that playing more games results in a higher rating,
implying the possible positive effect of increasing the number of games played.
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Rating

OLS OLS FE FE

(1) (2) (3) (4)

Intercept -0.000 -0.026∗∗ -0.000 -0.043∗∗∗

(0.008) (0.011) (0.009) (0.012)
# of Games 0.300∗∗∗ 0.308∗∗∗ 0.234∗∗∗ 0.251∗∗∗

(0.009) (0.013) (0.008) (0.011)
Win-Stopper 0.067∗∗∗ 0.125∗∗∗

(0.020) (0.022)
# of Games and Win-Stopper 0.048∗∗ 0.007

(0.024) (0.019)

Observations 14,788 10,472 117,070 82,770
R2 0.090 0.091 0.055 0.058
Adjusted R2 0.090 0.091
Residual Std. Error 0.954(df = 14786) 0.946(df = 10468)
F Statistic 1083.984∗∗∗ (df = 1.0; 14786.0) 286.322∗∗∗ (df = 3.0; 10468.0) 6806.8∗∗∗ (df = 1.0; 117068.0) 1701.2∗∗∗ (df = 3.0; 82766.0)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: Columns (1) and (3) use Ordinary Least Square and Fixed Effects models, respec-
tively, to study if the number of games played and rating are connected. Similarly, columns
(2) and (4) study if there is an asymmetry between win- and loss-Stoppers in improving
their rating. Variables, # of Games and Rating (dependant variable) are standardized. Vari-
able win-stopper takes values 1 or 0 if the observation belongs to a win or loss-stopper,
respectively.

K World maps
The data includes users from 191 different countries,29 however, there are certain countries
with too few users and we exclude those countries. In particular, we remove the countries
with less than 30 users and we end up with 65 countries with at least 30 users. Note, almost
50% of the users in our data indicate their country to be one of the following 5 countries:
USA, India, Russia, Canada, or Norway. Figures 16, 17, 18 include three world heat maps
showing number of users, average rating and the fraction of win-stoppers among behavioral
types.

The fraction of behavioral types varies by country and ranges between 67.3% (Fin-
land) and 92.3% (Vietnam). Furthermore, the ratio of win-stoppers among behavioral
types varies considerably by country ([10.8, 44.1]). For example, win-stoppers make up
only 10.8% of all behavioral types in Kazakhstan, while in Japan, they are 44.1% of all
behavioral types. Future work could study the differences and possible underlying factors
leading to heterogeneity documented above.

29 It is important to emphasize, however, that country variable is self-reported by the users, they can choose
any country they wish and they can also change it afterwards.
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Figure 16: Number of users from a country

Figure 17: Average rating in a country

Figure 18: Fraction of win-stoppers in a country
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