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1 Introduction
As a society, we consistently face situations where we require to coordinate our actions. Many of these

settings can be considered a regime change game in which participants can disrupt an existing status

quo but only if a large number of individuals coordinate their actions. For example, authoritarian po-

litical regimes can be toppled, but only if enough people join a protest. Currency can be devalued,

but only if a sufficiently large number of speculators attack it. A well-established structure to examine

these phenomena is global games wherein there is a breakdown in common knowledge and individuals

have private information about the state of the world.1 This paper builds on research in global games by

introducing the possibility that individuals communicate before considering an action. Such communi-

cation can occur in multiple circumstances, e.g., in political crises, people use social media to indicate

their intention to protest. During currency crises, banks issue statements about their plans. Recently,

retail investors2 used a discussion platform to coordinate a successful short squeeze3 of a GameStop

Corp. stock that led to a ‘once-in-a-decade’ stock price spike. Furthermore, for all these examples,

the involved parties are not committed to their communicated intentions, thus making this interaction

cheap-talk.

This study introduces communication as a strategic choice between similarly informed participants

in a standard two-person global game setting. Binary message space is considered,4 where agents can

send one of the two messages implying an intention to either join the regime change or abstain. There

exists a communication equilibrium that preserves the structure of the global game and can improve the

agents’ welfare.5 Two types of inefficiencies are present in global games. First, individuals coordinate

on the risk-dominant as opposed to the payoff-dominant equilibrium. Second, individuals may mis-

coordinate, thus leading to unnecessary costs. The communication equilibrium induced by cheap-talk

communication can improve the welfare by reducing both types of inefficiencies. Interestingly, how-

ever, communication leads to an overreaction in some instances. Agents attack the regime more than if

they had acted based on their combined full information. Communication swings the types that would

like to join the regime change, but their information alone would not have been enough. These types

are on the fence; they get persuaded by a positive message from the other side that nudges them to join

1 For example, see Morris and Shin (1998, 2002) and Corsetti et al. (2004) for currency attacks; Goldstein and Pauzner
(2005) and Rochet and Vives (2004) for bank runs; Dasgupta (2007) for delayed FDI investments; Corsetti et al. (2006) and
Zwart (2007) for debt crises; Edmond (2013) for information manipulation by the regime; and Angeletos et al. (2007), Chas-
sang (2010), and Mathevet and Steiner (2013) for a more dynamic setting. Heinemann et al. (2004, 2009) find experimental
support for certain theoretical predictions.

2 A retail investor is an individual, non-professional investor who trade securities via brokerage firms or savings accounts.
3 Rapid increase in the price of a stock primarily because of an excess of short selling rather than underlying fundamentals.
4 Note that while focusing on binary messages may seem restrictive, it mimics the expression of sharing intentions about

choices in our daily lives. We are more likely to share our intended action than we are to state all the pieces of information
that lead us to lean toward taking that action. Alternative message space is examined later in the paper, and the experiment ex-
amines whether intention sharing naturally arises in the environment where information can be shared directly. See Appendix
B for more details.

5 There exists an uninformative (babbling) equilibrium in which agents ignore the messages; in this case, the actions are
the same as those in a game without communication.
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the cause.

There are two stages in this environment: the communication stage, in which agents interact, and

the actions stage, in which agents join the regime change or abstain. The communication equilib-

rium involves threshold strategies in the communication stage, where an agent states the willingness

to participate in an attack if the private information exceeds a threshold. Intuitively, when the agents’

messages agree, actions follow the messages. If there is a disagreement, the magnitude of signals be-

comes important. If an agent sends a message with an intention to attack and the other agent disagrees,

two things can happen: If the agent’s private information is extremely strong, the agent will go through

the message and single-handedly take on the regime. However, if the agent’s private information is not

so extreme, they will abstain from attacking despite their stated intention to attack. Communication

equilibrium results in an unusual and intriguing outcome in which even after reporting a plan to attack,

agents may not follow their message, and it is part of an equilibrium. The message conveying the

intention to attack is more of a “maybe” message.

The overall welfare implications of communication depend on the side that we consider. Suppose

we examine the consequences of communication from the viewpoint of the central bank that may

want to keep the currency peg intact; then, communication is not beneficial because it increases the

probability of coordinated attacks. Consider political protests: if we evaluate communication from the

viewpoint of protesters, it is beneficial. However, a dictator who wants to stay in power will want

to prevent and obstruct communication because it increases the probability of a successful revolution.

This is a phenomenon we see in different parts of the world where the government tailors access to the

internet, or bans access to certain social media outlets. In conclusion, the theory illuminates whether

and when the consequences of communication are beneficial and to which side.

The theory provides specific predictions about the overall outcome of introducing communication

in this environment. Moreover, the theory prescribes a map of how the agents should react to different

configurations of messages—this aspect of the theory is less commonly reported in the literature. That

is, when cheap talk is introduced into coordination games with complete information, the effects of

it often depend on additional refinements. The theories on how agents should react to heterogeneous

messages are still few and require additional research.6 In this study, the communication equilibrium

has an easy map for agents. If the messages agree, the agents simply follow through with corresponding

actions. If the messages disagree, the agent with the negative message follows through with the inten-

tion, whereas the other one re-evaluates his intention in a simple manner: if the evidence is extremely

strong (i.e., the signal is greater than the threshold), attack the status quo or otherwise abstain.

In the second part of the study, the model predictions are examined in a lab experiment. The ex-

periment is additionally intriguing since all thresholds in the model are numerically calculated. Hence,

the agent’s behavior in the lab and theory can be compared on both overall and individual point levels.

6 Blume (1998) reasons that communication results in the selection of a more salient equilibrium if all players communicate
homogeneously, agreeing on an equilibrium. The results in Blume (1998) are obtained with the condition that messages have
a priori informational content (AIC condition). See also, Farrell (1988) and Aumann (1990) for definitions of self-committing
and self-signaling messages, respectively, which are argued to lead to credible communication.
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This study presents a new statistical result that allows relatively straightforward calculation of all

required thresholds in the experiment. In the action-taking stage, the agent has to combine two qual-

itatively different pieces of information. The agent has their point signal about the state of the world

and an intention from the agent. The latter indicates an interval information: the other agent’s signal

was either above or below a threshold. Note, this is not an interval information about the true state of

the world, that would lead to truncating the prior distribution. This interval information is based on the

signal realization of the other agent. Combining these point and interval signals leads to a new result,

which, in turn, results in more precise thresholds for the experiment.

The purpose of the experiment reported in this paper is twofold. First, the experiment provides a

test of the number of predictions arising from the theory. The experiment examines whether the ability

to communicate affects the subjects’ strategies and consequently their payoffs. Second, the experiment

examines whether binary communication with intention sharing arises even when a richer message

space is available to subjects. Let us describe the treatments in the experiment.

For the control treatment, which replicates the baseline game without communication, subjects

observe a private signal about the true state of the world and then decide between two alternatives:

attack or abstain.7 Then we have communication treatments. In the first communication treatment,

the communication protocol follows an intuitive structure that comes from the equilibrium. In this

treatment, called the letter-messages treatment, subjects are allowed to send one of the two letters

corresponding to their two actions. The experimental data demonstrate that the vast majority of subjects

use the communication protocol to convey information. Moreover, what is even more encouraging, the

subjects use threshold strategies to transmit information. In the communication equilibrium described

in the theory section, as per information exchange, if individuals agree on an intended action, they

should follow through with their initial intentions. Experimental data provide strong supports for these

qualitative features of the equilibrium. If both subjects agree on an intended action, they follow through

with their intentions in >99% of cases. However, the subjects set much more demanding cutoff levels

than those theoretically predicted. The thresholds they use to send a message are highly conservative

and are similar to the threshold they would use in the action stage in the absence of communication.

Hence, participants state what action they would have taken in the absence of communication, and they

miss out on the payoff improvement via threshold reduction.

Additional treatments are considered to examine whether restricting communication to two mes-

sages is the reason behind the lack of benefit of communication in this environment. In the second

communication treatment, number-messages treatment, after subjects observe their private signal (a

number), they can send any number message. In this treatment, the subjects need to identify certain

common language using numbers to signal their intentions to the other subject. Although this treatment

allows transmitting more information, the task becomes difficult without commonly understood mes-

sages. Hence, the number-and-letter treatment is introduced. This treatment allows subjects to send

both a number and a letter (intended action). Although from the equilibrium perspective, the ability

7 In the experiment, we use neutral action labels, A and B, to avoid any confounding effects of charged language.
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to send a letter message is redundant, the treatment is introduced because, behaviorally, it may help

clarify a subject’s intended action.

The communication treatments reduce the miscoordination observed in the control treatment; how-

ever, the aggregate effect of communication on payoffs is not statistically significant. This evidence

goes against the beneficial effects of communication in coordination games with complete information,

thus highlighting the disruption of communication benefits in the environment where communication

transmits information and does not simply confirm the intentions. While experimental data provide

strong support for the qualitative features of the communication equilibrium, the agents are far from

the theoretical predictions. Agents communicate to convey their intentions, and they do not consider

the strategic information contained in their message. Additional research with open-chat discourse or

more structured interaction can be implemented to observe whether agents become more strategic with

their messages.

2 Related Literature
This study introduces communication as a strategic choice between similarly informed participants in

global games. The possible effects of introducing cheap talk among agents in global games were briefly

discussed in Morris and Shin (2003), page 71. Besides this short discussion, communication in global

games has been overlooked; the “top-down” approach is adopted when considered. In this approach,

additional information is provided via a public signal either directly or through a public choice.8 The

communication incentives in this study differ from an environment where one policy-maker communi-

cates to all agents or an environment in which the communication combines two signals, thus resulting

in an action based on common information, as in ? or Shadmehr and Bernhardt (2017). The commu-

nication equilibrium described in this study is the partially informative one in which the messages are

intuitive and correspond to intended actions.

This study contributes to the literature on communication in coordination games with incomplete

information. Baliga and Morris (2002) studied one-sided communication in a two-player, two-state

game where the cost of taking a risky action can be high or low. One player is completely informed and

can send a cheap-talk message to the other player who has a low cost of attacking. The authors report

that the complete revelation of the cost type cannot be supported in equilibrium, similar to the intuition

of communication in the battle of the sexes game as discussed in Banks and Calvert (1992). In Baliga

and Morris (2002), unlike the global games’ structure, the agents’ types are not correlated. In their

setting, assuming the independence of types can be a valid assumption, whereas, in the global games

environments, the underlying fundamental state is important for all the sides involved. The assumption

of type independence results in a non-monotonic communication equilibrium, as reported in Example

4 of Baliga and Morris (2002) and in Baliga and Sjöström (2004). In both of these studies, the high

8 Hellwig (2002) was the first to introduce public signals into the model of Morris and Shin (1998) and characterize the
equilibria in global games with public and private signals. For aggregating information through prices or interest rates, see
Angeletos et al. (2006), Hellwig et al. (2006) and Ozdenoren and Yuan (2008). For information manipulation through biased
media, see Edmond (2013). Chen et al. (2016) modeled a rumor as a public signal.
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types mimic the messages of low types. This equilibrium can be sustained by exploiting the medium

types who care the most about coordination.9

Baliga and Sjöström (2012) expand on Baliga and Sjöström (2004) where a third-party public com-

munication is introduced through an extremist who is either a “provocateur” or “pacifist.” Their work

considers binary messages and shows how this assumption is without loss of generality, unlike the cur-

rent study, where a richer message space is reported to alter the equilibrium and welfare. If the third

party is a “hawkish extremist” and actions are strategic complements, the extremist’s messages can

increase the possibility of a conflict and decrease welfare. Evdokimov and Garfagnini (2018) exper-

imentally examines the model considered in Baliga and Sjöström (2012). The experimental evidence

does not support the most informative or uninformative equilibrium. Evdokimov and Garfagnini (2018)

reported that third-party communication is not strategic.

Although a vast base of theoretical literature on global games exists, experimental literature on

this topic is considerably scarce.10 Heinemann et al. (2004, 2009) experimentally study a speculative

attack model under perfect and noisy private information. In contrast, Cabrales et al. (2007) test the

theory in more discrete state space and in a two-player setting. These studies demonstrate that subjects’

behavior is consistent with the theoretical predictions and that the vast majority of subjects use threshold

strategies. Cornand and Heinemann (2008) consider a combination of private and public signals and

two noisy public signals in another treatment. The case of one private and one public signal provides a

higher probability of an attack than two noisy public signals. Subjects seem to overreact to the public

signal when they observe a private one. Similar results were reported by Cornand and Heinemann

(2014) where subjects overweight the public signal. Duffy and Ochs (2012) examine a dynamic global

game and report no significant differences between the dynamic and static game thresholds.11

Qu (2013) experimentally examine the effect of endogenous information acquisition via market

prices (see the theoretical model in Angeletos and Werning (2006)). An additional treatment introduced

in the study is the cheap talk protocol, which is similar to the intention-sharing treatment in the current

study. In Qu (2013), an experimenter acted as a mediator, collecting the intentions to invest, and

reported back to the group the percentage of subjects that demonstrated interest in investing. The

experimental results show that informative equilibria occurred and that cheap-talk interaction improved

the coordination, which contrasts with the results reported in the current study.

Szkup and Trevino (2020) experimentally examine the costly information acquisition model of

Szkup and Trevino (2015).12 The paper demonstrates that subject behavior is consistent with the theo-

9 See Appendix D, where Example 4 of Baliga and Morris (2002) is modified to fit the environment studied in this paper.
The type of non-monotonic equilibria described in these papers does not exist in the current paper. Additionally, the mono-
tonic equilibrium characterized in the current paper cannot be supported in their setting (see Baliga and Sjöström (2004),
page 360).

10 See Duffy (2008) for a survey of experimental work in macroeconomics.
11 Shurchkov (2013) tested a two-period version of the model in Angeletos et al. (2007), and their results provide support

for most theoretical predictions. The results show that knowledge about the survival of the status quo in the first stage
discourages an attack in the second stage.

12 See also, Trevino (2020) for a two-country model of contagion and corresponding experimental evidence.
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retical predictions of a threshold strategy usage; however, subjects invest too much into acquiring pre-

cision of their signal in the information acquisition phase. In the experiment conducted in the present

study, the communication stage is added to the base game of Szkup and Trevino (2020), thus keeping

all the relevant parameters the same. This allows the comparisons of the control treatment in this study

with the control treatment in their study.

Extensive experimental studies on the effects of communication in coordination games with com-

plete information are reported in the literature, and these studies demonstrate that cheap talk can facil-

itate coordination on an efficient equilibrium (for a critical survey, see Devetag and Ortmann (2007)).

Van Huyck et al. (1990) demonstrated that there is a strong tendency of play to diverge toward an inef-

ficient risk-dominant equilibrium in the minimum-effort game; this result has motivated considerable

research, leading to a vast literature on this subject. Cooper et al. (1992) reported that with one-way

communication, the payoff-dominant equilibrium was selected more often in a 2 × 2 Stag and Hunt

game, but two-way communication does so to a greater extent. Blume and Ortmann (2007) tested the

effect of cheap-talk communication both in the minimum-effort and median games. They report that

messages facilitated high rates of convergence to the Pareto-dominant equilibrium.13 Unlike the litera-

ture, in this study, similar communication treatments failed to significantly improve payoffs. This result

may be attributed to the fact that coordination games with incomplete information have an additional

layer of difficulty. The messages provide the intention to play and information about the underlying

fundamental state. Additional research and experimental treatments need to be conducted to understand

nonstrategic communication in incomplete information coordination games.

3 The Model
This section first introduces the baseline game without any communication. Subsequently, the infor-

mation sharing protocol is introduced. The framework for the underlying game is similar to the 2 × 2

model of global games introduced by Carlsson and Van Damme (1993) and advanced by Morris and

Shin (1998, 2002).

3.1 Baseline framework without communication
The state of the world is characterized by a fundamental θ ∈ Θ. In the example of the currency attack, θ

describes the net gain from a devaluation; in the example of regime overturning, θ describes the strength

of the government. Agents, indexed by i ∈ I = {1, 2}, are ex ante identical and simultaneously choose

between two actions: they can either attack the status quo (ai = 1) or refrain from attacking (ai = 0).

Thus, the action space for player i is Ai = {0, 1}. Let A := A1 × A2. Attacking has a fixed cost of

c > 0, which can be interpreted as a direct transaction cost or the opportunity cost. The action ai = 1

is successful if the other agent selects to attack and θ > θ or if θ > θ̄; hence, the upper and lower

dominance regions for the fundamental are defined by θ and θ̄. An agent’s incentive to attack increases

13 See also Berninghaus and Ehrhart (2001), Burton and Sefton (2004), Devetag (2005), Charness (2000), Brandts and
Cooper (2006), Chaudhuri et al. (2009), Deck and Nikiforakis (2012), and Avoyan and Ramos (2022).
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with the aggregate size of an attack; hence, the agents’ actions, ai, are strategic complements.

The payoffs can be summarized in a matrix form, as shown in Figure 1:

Success Failure
Attack θ − c −c

Not Attack 0 0

Figure 1: Payoff Matrix

All agents start with a common prior for θ; they believe θ is drawn from a normal distribution with

mean θ0 and variance σ2
θ .14 Each agent i receives a private signal xi = θ + σiεi, where xi ∈ Xi, and

εi ∼ N (0, 1) is a noise, which is independent and identically distributed across agents and independent

of θ. Given the realization of agent i’s signal, xi, the posterior distribution of θ is normally distributed

with mean θ̃i, and variance σ̃2
i , where θ̃ =

xiσ
2
θ+θ0σ2

i

σ2
θ+σ2

i
and σ̃2

i =
σ2
θσ

2
i

σ2
θ+σ2

i
.

The game with the common knowledge of the state of the fundamental θ (complete information

game) serves as an intuitive baseline to the game with private information. For θ < θ, regime change

will not happen even if both agents attack; hence, the dominant strategy is to refrain from attacking

and to maintain the status quo. If θ ≥ θ, one agent selecting to attack is sufficient for abandoning the

status quo; hence, the dominant strategy is to attack. The case of interest is when θ ∈ [θ, θ̄), where two

pure-strategy equilibria are sustainable: (i) both agents attack, and the status quo is abandoned and (ii)

both agents refrain from attacking, and the status quo is maintained.

Carlsson and Van Damme (1993) demonstrate that the multiplicity of equilibria described above is

attributed to the complete information of the payoff function. If agents do not observe the true value of

θ but rather a noisy private signal of θ, there is a unique equilibrium. This equilibrium is characterized

by a symmetric threshold strategy such that agent i attacks the status quo if and only if the signal

realization is greater than a threshold x∗NC ; i.e., the agent i ∈ {1, 2} follows a symmetric threshold

strategy:

ai(xi) =

1, iff xi ≥ x∗NC
0, iff xi < x∗NC

For the completeness of the baseline framework, the latent threshold x∗NC is solved. Let g(θ, x∗j )

be the payoff of agent i given θ, and let x∗j be the threshold of the other agent. The expected payoff of

agent i conditional on taking an attacking action is as follows:

E[g(θ, x∗j )|xi] =

θ∫
θ

θ
[
Pr(xj ≥ x∗j |xi, θ)

]
p(θ|xi)dθ +

∞∫
θ

θp(θ|xi)dθ − c

Agent i will select to attack the status quo if and only if the expected payoff is ≥ 0, E[g(θ, x∗j )|xi] ≥
0. To solve for an optimal threshold x∗NC , we only require to identify a signal for which agent i is

14 Alternatively, we can assume an improper uniform prior for θ on R and common public signal.
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indifferent between attacking the status quo and refraining from attacking; i.e., E[g(θ, x∗j )|x∗NC ] = 0,

given the optimal threshold of agent j, x∗j . There exists a unique, dominance-solvable equilibrium in

which both agents use threshold strategies with cutoff x∗NC .

3.2 Cheap-talk communication
This section introduces communication with a binary message space into the baseline framework pre-

sented in Section 3.1. Without additional assumptions,15 the restriction to binary message space is with

loss of generality. This paper focuses on examining binary communication since it has an intuitive

interpretation of stating an intention to attack or not. Alternative message space is considered in the

appendix; see Appendix B.

Let the message space of agent i be Mi = {0, 1}. Once agent i has observed the private signal

xi ∈ Xi, he sends a message mi : Xi → Mi to the other agent before determining to either attack the

status quo or refrain from attacking, ai : Xi ×M → Ai, where M = Mi ×Mj . All messages are sent

and received simultaneously, and sending a message bears no cost (see a discussion on costly messages

in Appendix B.1). The timing of the entire game is detailed in Figure 2.

Nature Draws
The State θ

Players Receive
Private Signals

Players Send and
Receive Messages

Players Choose

to Attack or Not

Figure 2: Timing of the Game

There exists an uninformative equilibrium where the messages are ignored; however, the case of

interest is the existence of informative equilibria.

Theorem 1 Communication equilibrium
There exists a perfect Bayesian equilibrium, where

(i) in the communication stage player i sends a message mi(xi), and

(ii) in the action stage player i takes an action ai(xi;x∗C , I), where

mi(xi) =

1, if xi ≥ x∗C
0, if xi < x∗C

(1)

ai(xi;xC , I) =

1, if mi = mj = 1 or xi ≥ x̄∗

0, o.w.
(2)

I = (mi,mj), xi ∈ Xi, and i 6= j.

15 For instance, see the discussion in Appendix B.2.
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For all combinations of signal realizations (xi, xj) ∈ R2 let us consider the outcomes of com-

munication under the informative equilibrium described in Theorem 1 (the proofs and details are in

Appendix A). Figure 316 summarizes the messages and actions, where 1 and 0 in the theorem corre-

spond to A and N , representing “attack” and “not attack,” respectively. Note, not all combinations of

(xi, xj) ∈ R2 are equally likely as the signals are drawn from the same normal distribution.

If both agents receive signals below the threshold x∗C , they then send a message not to attack; both

abstain from attacking in the action stage and maintain the status quo. Similarly, if both players receive

signals above the threshold x∗C , they send a message to attack, and they both attack. Thus, if agents

agree on an intended action, they follow through with their initial intentions.

Figure 3: Informative Equilibrium Messages and Actions

xi

xj

(a) Messages Sent

x∗C

x∗C

(b) Actions Taken

xi

xj

x∗C

x∗C

x̄∗

x̄∗

(N,N)

(N,A)

(A,N)

(A,A)

(N,N)

(N,A)

(A,N)

(A,A)

If the intended actions disagree, agents use a significantly more demanding cutoff. Consider the

case shown in Figure 3 where the realized signals are in the gray dotted areas. Area (A,N) and (N,A)

are the case that one agent has a signal greater than x∗C , while the other has a signal less than x∗C .

Depending on the magnitude of the attack signal, the agent who received a no attack message may still

determine to unilaterally attack the status quo. In particular, agent i attacks the status quo if the realized

signal xi is greater than the threshold x̄∗.

Note that if an agent’s message conveys an intention to not attack, that agent cannot be persuaded

to switch and attack in the action stage. The intuition behind the statement is that if an agent has

information as per which they would choose to attack if the other agent were to attack, this player

would have sent an attack message (“A”). An attack message (weakly) increases the probability of the

other agent following, and the expected payoff is higher. Hence, the communication threshold x∗C is

16 Note that, Figures 3, 4, and 5 are illustrative graphs and that certain thresholds are not to scale. In particular, x̄∗ is
considerably larger than the other thresholds. It is included in the graph to demonstrate all the possible regions. For the
experiment, e.g., while x∗C , xNC , and 2xFB are around 11, 28, and 34, respectively, x̄∗ is 178.
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based on the most optimistic case where the other agent has positive information and is going to attack.

This intuition is at the heart of this communication equilibrium, and it gives us the first glimpse that

agents can be much more aggressive than they would be without communication in their attacking

actions as x∗C is less than the non-communication threshold x∗NC (for more on this, see Section 3.4).

Moreover, note that if the realized signal for agent i is less than x∗C , this agent will not attack

under any circumstance, and this agent’s payoff is 0 regardless of the action of the other agent. This

indifference makes the messages for xi < x∗C easily malleable. In addition to making communication

equilibrium possible with binary messages, this indifference can be leveraged when the message space

is richer. In the latter case, the indifference can be used to select the most informative equilibrium

within the type of equilibria considered (see the discussion in Appendix B.3).

3.3 Combining point and interval signals
There are two stages in this environment: the communication stage in which agents interact, and the

action stage in which the agents join the regime change or abstain. An agent at the second stage of

the game—i.e., the action stage—has two pieces of information. One piece of information is the point

signal xi ∈ R that he privately received and the message from the opponent of the intention to take one

or the other action. A positive message from the opponent indicates that the signal, xj , is higher than

the communication threshold (xj ≥ x∗C), and a negative message implies the opposite, i.e., the signal

is below the threshold (xj < x∗C). The agent has to combine a point signal that he fully observes and

an interval signal resulting from the opponent’s point signal. To my knowledge, this study presents the

first documentation of the resulting distribution of θ given such a combination of signals.

Recall that the agent i’s information set is (xi,mj), where xi|θ ∼ N(θ, σ2
i ) and mj |θ ∼ Bern(1−

q(θ)) with q(θ;x∗C , σ
2
j ) = Φ(x∗C ; θ, σ2

j ). The following lemma presents the result (see Appendix A.1

for details, proofs, and additional information about the distribution).

Lemma 1 If the prior for θ is N(θ0, σ
2
θ), the posterior distribution of θ is an extended skew-normal

distribution, with density

p(θ|xi,mj) =
1

Φ(τc)

1

ωc
φ

(
θ − ξc
ωc

)
Φ

(
τc
√

1 + α2
c + αc

θ − ξc
ωc

)
where

ξc =
σ2
i θ0 + σ2

θxi
σ2
i + σ2

θ

, ω2
c =

σ2
i σ

2
θ

σ2
i + σ2

θ

and

αc =
α√

1 + σ2
i /σ

2
θ

τc = τ

√
1 + α2

1 + α2
c

+
α(θ0 − xi)

σi(1 + σ2
θ/σ

2
i )
√

1 + α2
c

.
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In the abbreviated form, this distribution can be written as ESN(ξc, ωc, αc, τc).

For any distribution ESN(ξc, ωc, αc, τc), ξc is referred to as the location parameter; ωc is the scale

parameter; αc is the slant parameter; and τc is the truncation parameter. Using Lemma 1, the posterior

mean and variance are calculated and are given by the following expressions:

µ = ξc +
φ(τc)

Φ(τc)
(δcωc), σ

2 = ω2
c

(
1− δ2

c

φ(τc)

Φ(τc)

[
τc +

φ(τc)

Φ(τc)

])
,

respectively, where δc := αc√
1+α2

c

.

3.4 Outcomes with and without communication
To evaluate the effects of communication under the informative equilibrium characterized in Theorem

1, let us first examine the changes in the outcomes. Figure 4 shows the equilibrium outcomes with and

without communication. The left panel shows that after receiving private signals, xi and xj , agent i and

agent j take an attack action if and only if their private signals are greater than x∗NC . Because there is

no communication, the actions are solely based on their own private signals. If both signals are greater

than x∗NC , both players attack and successfully abandon the status quo. Similarly, if both signals are

less than x∗NC , both players choose not to attack, and the status quo is maintained. Finally, suppose

only one agent attacks and the other does not. In that case, we get mismatched actions, represented by

the gray regions in the left panel (the success of a single-handed attack depends on the true underlying

value of the fundamental).

Figure 4: Outcomes Without and With communication
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The right panel of Figure 4 shows the equilibrium outcomes of the game with communication.

Recall that x∗C is found by assuming that the other agent has good information (xj ≥ x∗C) and that

they will attack with probability 1. Therefore, x∗C < x∗NC . Two primary types of changes arise
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from communication: (i) switches from (N,N) outcome to (A,A) outcome, and (ii) switches from

(A,N) and (N,A) outcomes to either (A,A) or (N,N) outcomes. If the realized signals are in the

region [x∗C , x
∗
NC) × [x∗C , x

∗
NC), without communication the outcome will be (N,N). However, the

outcome is (A,A) with communication. Let us focus on the area [x∗NC ,∞)× [0, x∗NC) where, without

communication, the outcome is (A,N). The addition of communication divides this area into three

regions. Communication enables coordination on “attack” and “not attack” actions, for which the

actions were mismatched in the absence of communication. Note that the area [x̄∗,∞) × [0, x∗C)

remains miscoordinated (the first indication that this communication equilibrium is not the first-best

outcome).

Up until now, we discussed the outcomes with and without communication. Now, the question is,

how does the communication equilibrium described in Theorem 1 compare to the first-best outcome?

The first-best outcome in this model will be to combine the two-point signals of the agents and attack

if the expected payoff conditional on the combined information is greater than 0 and abstain from

attacking otherwise.

Figure 5: First-best vs. Communication Outcomes
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(a) First-best outcome
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(b) Communication outcome
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Due to the uncertain nature of θ and signals, even the first best solution is not free of Type I and Type

II errors. Here, we say that a Type I error (i.e., false positive) occurs if both agents attack when they

should not have attacked, i.e., true θ was in the “no attack” dominant region. As a result, both agents

paid the cost but received no gain from it. Furthermore, we say that a Type II error (false negative)

occurs if both agents abstain from an attack when they should have attacked, i.e., true θ was not in the

“no attack” dominant region, and if both agents attacked, they would gain a positive payoff. To obtain

a sense of how these errors evolve with or without communication compared to the first-best case, let

us consider a numerical example. The second part of this study includes an experiment, and we use

the parameters from the experiment and compare the three outcomes by considering Type I and Type

13



II errors.

No Communication Communication First-best

Type I Error 4.4% 2.4% 1.6%
Type II Error 9.8% 2.0% 1.8%

Table 1: Numerical Comparison

Table 1 summarizes the results of Type I and Type II errors for three cases. The data were simulated

using the parameters in the experiment, and 500 draws of θ, and the corresponding two signals for each

agent. Without communication, in 9.8% of the time, players missed out on attacking when a successful

attack would have been possible; with communication, this type of error decreased to 2% of that in

the case without communication. Similarly, the occurrence of false attacks for which players pay the

cost of attacking but receive no gain decreased from 4.4% to 2.4%. As reported, the first-best outcome

exhibits both types of errors, and the rates are similar to ones in the intention communication case.

It is worth noting that one can suspect more Type I errors under communication than under no

communication. This could be hypothesized since under communication agents are more aggressive

and attack the regime more often. However, although the agents in the case with communication are

more aggressive, their decisions are based on better information, thereby leading to lower error rates

overall.

4 Experimental design
The experimental sessions were conducted at the Center for Experimental Social Science (CESS) lab-

oratory at New York University (NYU), using the software z-Tree (Fischbacher (2007)). Participants

were recruited from the general population of NYU students using hroot Bock et al. (2014). There was

a total of 14 sessions with 172 subjects. All the treatments included 20 to 25 groups each. The experi-

ment lasted about 50 min, and on average, subjects earned $21 that included a $10 dollar show-up fee.

In each session, written instructions were distributed to the participants and read aloud.17

The experiment involved four different treatments. Participants were randomly divided into pairs in

each treatment, and this assignment was fixed throughout the experiment. Each pair faced 50 indepen-

dent and identical rounds. All subjects had to choose between two alternatives in each round, namely,

A and B. Before the participants made their A/B choice, they received a private signal about the true

state X , a random variable that affected the payoff structures of both players. The parameters used

were similar to those adopted by Szkup and Trevino (2020). In particular, the current study’s control

treatment was identical to exogenous medium precision level treatment in Szkup and Trevino (2020).

For all these treatments, the true state X is randomly drawn from a normal distribution with a

mean of 50 and a standard deviation of 50. This randomization is performed once; it is used in every

treatment. This selection ensures that the differences between treatments are attributed to changes

17 The instructions provided in the experiment can be found in Appendix D.
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in communication protocols and are not precedents because of the particular order of realized values

of X . The coordination region for which two pure-strategy equilibria are sustainable under complete

information is [0, 100). All subjects receive a private signal randomly drawn from a normal distribution

centered at the true value of X and has a standard deviation of 10. Choosing action A always bears a

cost of 18 points, thus effectively making the coordination interval [18, 100).

The first treatment in the experiment was the control treatment, T0, where the participants observed

their private signal and then proceeded to make their A/B choice. Once both participants in a pair

made their selection, the round was over, and they received feedback. The participants observed the

realization of X in this round, their own private signal realization, the choice made by them and by the

other member of the pair, and the individual payoff in the round. Note that no communication or any

sort of interaction was allowed in the control treatment. All other treatments in the experiment involved

a specific type of communication.

In the intention-sharing treatment, TI , once the subjects have observed their private signals but

before they make their final decisions, they can send a message that can only be a letter mL ∈ {A,B}.
These messages can be interpreted as “I’m going to choose the alternative .” In the signal-sharing

treatment, TS , once the participants observed their private signals about the true state X , but before

they made their final decisions, they sent a message to each other. This message could be any number

mN ∈ R and were interpreted as “My signal is .” The message-sending stage was simultaneous;

once both participants in a pair received the other’s message, they could proceed and decide between

the alternatives A and B. The round was over when both subjects made their A/B choice.

In the third communication, intention-and-signal-sharing treatment, TI&S , once the subjects ob-

served their private signals, but before they made their final decisions, they could send a message that

could be any number mN ∈ R and a letter mL ∈ {A,B}. These messages can be interpreted as “My

signal is ” and “I’m going to choose the alternative ,” respectively. Providing a letter message

in addition to the number message is theoretically redundant. In equilibrium, when a player sends a

number message, what that number indicates in terms of intended action is apparent. However, the

effect, experimentally, is not trivial.

Treatments Communication Message Space

T0 None —
TS Cheap Talk Signals
TI Cheap Talk Actions
TI&S Cheap Talk Signals and Actions

Table 2: Experimental Design

For all communication treatments, TS , TI , and TI&S , the end-of-the-round feedback consists of

the realized value of X , the participant’s own signal realization, the message sent and received, the

choice made by the participant and the other member, and the individual payoff in the round. After

50 rounds, subjects took a short survey and received their final payment that included the show-up fee
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and the average of five rounds of the payoffs randomly selected from all 50 rounds (survey results are

summarized in Appendix C).

Table 2 summarizes the experiment treatments, communication protocols, and the message space

available to the subjects.

5 Experimental Results
This section presents the results of the experiment. First, it is established that the vast majority of

subjects use threshold strategies both in the communication and action stages. Second, the message-to-

action map is examined, and the data strongly supports the predictions. Then, quantitative thresholds

are presented and compared to the theoretical predictions. Finally, the overall effects of all treatments

are compared in terms of the levels of miscoordination and final payoffs. Despite the strong evidence

that subjects follow threshold strategy reasoning and correctly update their actions based on the mes-

sage profile, the overall effect of communication on payoffs is not statistically significant.

5.1 Use of threshold strategies
We say that a behavior is consistent with a threshold strategy if a subject uses a perfect or almost perfect

threshold strategy. An example of a perfect threshold strategy usage is presented in Figure 6a, in which

the alternativeN is selected for the low realizations of signals andA is selected for the high realizations

of signals with exactly one switching point. In Figure 6a, for signals less than 40, the subject selects

an action N (ai = 0 on the graph), whereas for signals above 40, the subject selects A (ai = 1 on the

graph). We say that a subject uses an almost-perfect threshold strategy if the threshold rule admits a

few errors—more precisely, if the overlap is less than three signals.18 For example, Figure 6b provides

an example of an almost-perfect threshold strategy with the overlap of two signal realizations.

Figure 6: Threshold strategy examples
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Result 1 summarizes the data.19 (For the breakdown of this result by treatment and periods, see

Table 5 in Appendix C.)

18 The classification is similar to the one given by Szkup and Trevino (2020).
19 The calculations for binary messages are based on treatment TI , i.e., the letter part of treatment TI&S . The calculations

for the action stage include all treatments. In the analyses, the last 25 rounds were considered.
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Result 1 Among the participants, 98.28% used threshold strategies in the binary-message communi-

cation stage, and 99.01% used threshold strategies in the action stage.

The data provide strong evidence of the usage of threshold strategies in both stages: when sending

a binary message and during the action stage.20 Note that threshold strategies are robust in that even

if a participant believes that the other participant is using a threshold strategy or is randomizing, the

best response is still a threshold strategy. Now that we have established a strong use of the threshold

strategies, we can examine the mapping from messages to actions.

5.2 Mapping from messages to actions
According to the equilibrium described in Section 3.2 if the messages sent by both agents in a pair

agree, the follow-up actions should be the intended actions. Figure 7 shows the transition of all possible

message pairs to actions for the treatment TI . The experimental results strongly support the theoretical

prediction: if both agents send the message A or if both send the message N , the outcome is (A,A) or

(N,N), respectively, > 99% of the time. This result shows that the message-to-action behavior of the

agents is highly consistent with the theoretical predictions.
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Figure 7: Transition matrix for treatment TI

Theoretically, a disagreement in the messages should lead to either switching to not attacking or

following through on their communicated intentions if the positive signal is extremely strong. Based

on experimental parameters, we should see zero values in the elements of the transition matrix when

(A,N) turns into anything except (N,N).21 Disagreements in messages result in all possible out-

comes, but the largest portion of the outcomes of > 50% correspond to the (N,N) action pair.

Result 2 The subjects closely follow the message-to-action mapping of communication equilibrium.

20 This result is consistent with previous literature, see Heinemann et al. (2004), Cornand and Heinemann (2014), and
Szkup and Trevino (2020).

21 If one agent sends the message not to attack, the other player should attack if their private signal is > 178.24. Because
the realized private signals and corresponding messages were never in that range, the second line of the transition matrix
should be 0%, 0%, 0%, and 100%.
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Thus far, we have seen strong evidence supporting the qualitative theoretical predictions. Now, we

consider the quantitative predictions of the threshold levels.

5.3 Estimating thresholds
To estimate the thresholds for all subjects who use threshold strategies, a logistic distribution is fitted

to each subject’s data and then averaged to obtain the aggregate results. The threshold is interpreted as

a signal for which there is a 50% chance of choosing the either alternative. Recall that the cumulative

distribution function (CDF) of the logistic distribution is given by

Pr(A) =
1

1 + exp(a− bxi)
with parameters a ∈ R and b > 0.

Following Heinemann et al. (2004), the ratio a/b can be interpreted as the mean threshold. The

standard deviation of the threshold estimate, π/(b
√

3), can be interpreted as a measure of coordination.

Table 3 lists the experimental and theoretical thresholds for sending binary messages and the estimated

thresholds for taking an attack action. For the action stage, the table provides unconditional thresholds

(i.e., the thresholds calculated using all of the data) and conditional thresholds (i.e., the thresholds are

conditional on matching messages).

First, note that in the control treatment with no communication, the numerical threshold is 28.31.

Table 3 highlights that the experimental threshold in T0 is 26.84, and it is statistically indistinguishable

from the prediction of 28.31. This evidence agrees with the theoretical predictions. Now, recall that

the threshold used to send a binary message should be identical to that used to attack in the action

stage because the other player is attacking. Thus, the following conjecture is related to how consistent

the players are with setting their message and action thresholds and whether they use the same cutoff

for both decisions. There is no evidence to reject the hypothesis that the experimental estimates in the

communication stage are equal to conditional thresholds in the action stage (a Wilcoxon signed-rank

test, which is a pairwise nonparametric test, cannot reject the hypothesis at the 5% significance level);

hence, we arrive at the next result.

Result 3 The communication and action thresholds are statistically indistinguishable.

Thus far, all the examined theoretical predictions have strong experimental support. However, this

is not true in the case of the communication and conditional action threshold in TI . In this case, the

signal threshold is more than twice the theoretically predicted level for the communication and action

stages. The subjects are not as aggressive as the theory predicts, and they send an attack message more

conservatively.

Theoretically, threshold reduction is achieved by considering the communication stage strategi-

cally. If an individual has information according to which they will choose to attack if the other person

were to attack, they will send a message that they intend to attack. This reasoning drives the thresh-

old for sending the attack message down. Note that this payoff-improving outcome results from the
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Table 3: Estimated and Theoretical Thresholds

Treatments
Communication Stage Action Stage

Experimental Theoretical Unconditional Conditional Theoretical

T0 — — 26.84 — 28.31
(1.653)

TI 25.62 11.47 28.66 25.80 11.47
(3.214) (3.855) (0.752)

individuals’ strategic behavior in the communication stage, stating that they intend to attack even when

they are unsure whether they will follow through. The participants instead seem to follow a simple

heuristic when sending a message in the experiment. The thresholds they use to send a message are

similar to those used in the action stage in the absence of communication. Hence, they state what they

would have done without communication, and they miss out on the payoff improvement from threshold

reduction.

Result 4 The communication and action thresholds are significantly higher than the theoretical pre-

dictions.

Let us evaluate the experimental effects of communication in all three communication treatments

by examining the frequency of miscoordination and overall payoffs. First, consider miscoordination—

subjects selecting different actions. For all these treatments, Figure 8 shows the frequency of mis-

matched actions. The miscoordination in all communication treatments is less than that in the control

treatment. Moreover, the ability to share a signal and an intention, while theoretically redundant, leads

to the lowest level of misscoordination in TI&S .

Figure 8: Frequency of Miscoordination
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Table 4 displays the mean payoffs in experimental currency units for each treatment and the results

of the binary hypothesis testing of the control treatment versus all other communication treatments

(the p-values are adjusted using Bonferroni correction for multiple hypotheses testing). Interestingly,

none of the communication treatments, TS ,TI , or TI&S , have a significantly different average payoff
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compared to the control treatment. While participants take advantage of communication by achieving

greater coordination and less miscoordination, they do not reduce the attack thresholds as theoretically

predicted and make numerous Type II errors (missed opportunities of success—i.e., the subjects could

have succeeded if they both attacked but they did not).

Table 4: Average Payoffs

Treatments T0 TS TI TI&S

T0 69.91 ∼ 70.00 ∼ 70.75 ∼ 69.31
(−0.114) (−2.298) (0.465)

Note: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Welch t-statistic in parentheses.

Result 5 The communication treatments reduce misscoordination. The payoffs in control and all com-

munication treatments are statistically indistinguishable.

Allowing agents to send cheap-talk messages corresponding to the actions is known to be effective

in coordination games with complete information (see, e.g., Blume and Ortmann (2007)). However,

there are no statistically significant differences for a similar one-stage communication treatment in

the coordination game with incomplete information, as studied in this work. Further treatments with

more elaborate interactions may be required for the coordination games with incomplete information

to achieve results similar to those for coordination games with complete information.

5.4 Communication strategies in a richer message space
This section examines communication in TS treatment. We examine numeric messages and classify

them into four types: truth-telling, partition, mixed, and babbling. Figure 9 depicts the different strategy

types on a graph where the x-axis is received signals, the y-axis is sent messages, the gray area depicts

the coordination region, and the black line is the 45-degree line. The top part of Figure 9 presents the

percentage of those types.
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Figure 9: Sample Message Strategies

If a player sends a message within five points of the true value in 45 out of 50 rounds, we classify

this behavior as truth-telling and label the subject a truth-telling type. This situation is depicted in
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Figure 9a. Consistent with the literature on information transmission in cheap-talk games, a fraction of

the players truthfully report their private information. Although the truth-telling levels in the current

paper are sizably smaller than the most papers.22 We find that 60% of subjects employ strategies in

which the full information is not revealed (even with somewhat conservative truth-telling definition).

If a subject partitions the signals into two messages for most of the 50 rounds, we refer to this

subject as a partition type. For example, Figure 9b shows the behavior of one subject classified as

a partition type; this player used the number 150 to indicate high signals and −150 to indicate low

signals. In the number-message treatment, TS , 20% of the players reported a common language to

signal intentions to the other player in the pair (some players used 1 and 2, others employed large and

small numbers such as 150 and−150 to indicate their intention for alternatives A and N , respectively).

It is worth emphasizing how sophisticated this behavior is, which is why number and letter treatment

was introduced in the first place.

Figure 9c shows a case of partial truth-telling or, as we classify them, mixed types. These types

inform the truth for certain values of the realized signal; however, in other regions, they either partition

or babble.23 Finally, we have babbling types that send messages that seem to be unrelated to the under-

lying signals, as shown in Figure 9d. Only 2.5% of the subjects exhibit babbling behavior, providing

strong support for the informative equilibria.

Overall, we observe a consistent use of communication to share intentions and information. Inter-

estingly, however, truth-telling is not as common in this environment compared to other games reported

in the literature; in previous works, the vast majority of messages were observed to be fully revealing.

Moreover, the effects of communication on payoffs are not universal for all types. The truth-telling

group performs worse than the partition or mixed groups. Hence, the overall effect of communication

is type-dependent.

6 Conclusion
Communication is a natural aspect of the environments modeled by global games, and it is essential to

consider the effects of it. Moreover, understanding the possible consequences of communication are

now more vital than ever because of the ubiquitous access and use of discussion platforms and social

media.24 In particular, this paper has focused on specific communication: intention sharing. In our

everyday lives, we routinely share our intentions, whether in person or on social media, and whether

it be about our possible vacation options or voting intentions. Often, we state our intended choices

22 See, for example, Cai and Wang (2006), where the authors implemented a cheap-talk game from Crawford and Sobel
(1982) in the lab. Similar results on truth-telling were observed in other studies: Blume et al. (1998, 2001), Evans III et al.
(2001), Gneezy (2005), and Sánchez-Pagés and Vorsatz (2007). For more examples, see Zak (2008). Few studies provided
evidence of strategic information concealment, e.g., Agranov and Schotter (2013, 2012) demonstrated that a vast majority
of subjects refrains from truth-telling, particularly in a disagreement region, where the leader and followers face potential
conflicts of interest. In general, the authors reported that vague or ambiguous language improves coordination in a region
where preferences are misaligned.

23 The mixed types considered in this work are similar to the A and C types in Agranov and Schotter (2013).
24 Even traders and investors keep a close eye and use such tools, for example, Bloomberg chat (an instant messaging tool

available to traders, investors, and other market participants with a Bloomberg Terminal).
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rather than the information on which these choices are based. Even considering that some reasoning

is included, it is uncommon to see all the information that made someone lean toward one decision

against another. Sometimes, it is even difficult to determine all pieces of information that lead to a

specific choice.

The experimental data in this study agree with the qualitative features of the intention-sharing

equilibrium. There is strong evidence that the players closely follow the map from the messages to

actions even if the quantitative thresholds are different from the theoretical ones. For example, if both

the players agree on an intended action, they follow through in over 99% of the cases. However,

the effect of communication on payoffs is statistically insignificant. Additional research in the area

can shed light on the subtleties and intricacies involved in the coordination game with incomplete

information compared to the case of the coordination game with complete information.

During January 2021, an unusual activity hit the financial market. The saga that unfolded on Wall

Street was the first. The GameStop Corp. (GME) stock purchases abruptly grew, and the price started

fluctuating accordingly. This event was a result of a coordinated actions by a large number of small

retail investors. Several aspects of this phenomenon fit well into the setting described in the current

study. There is uncertainty about the “strength” of certain hedge funds that held short positions on the

GME, and hence, there is uncertainty about the number of shares required and the wait time for the

“success”25 of the retail investors. One particularly fascinating aspect about this event with regard to

the scope of this study is the use of a message board for this coordinated attack. The communication

between the participants is primarily performed via a subreddit, /r/WallStreetBets, on a social platform

called Reddit.26 Several users with a large number of shares of the GME stock posted daily screenshots

of their portfolios. Usually, these posts demonstrated an intention not to sell these shares; although

these posts were pure cheap talk, they seem to have affected small (retail) investors. The ability to

share intentions to buy and then maintain the shares of GME for an indeterminate amount of time led

to a successful coordination that resulted in several “once-in-a-decade” stock price spikes. Even after

stabilization, the price was ten times that before this coordinated attack. While there was undoubtedly

an exchange of information on the state of hedge funds that held short sells of GME stocks, among

other information, most of the exchange on this platform was about an intention to maintain the stocks

or to possibly buy more if feasible.

The example of the GME short squeeze emphasizes the ability of a large number of individuals to

realize a shared action with the simple ability of intention sharing. Indeed, this is a simplification of the

environment, and many other reasons contributed to the event; however, it is clear that this event would

not have occurred without a platform that brought together thousands of people who do not know each

other and are still primarily anonymous.

25 The “success” refers to the successful execution of a short squeeze. Numerous individual retail investors and several
hedge funds lost a considerable amount of money.

26 Reddit is a content/news sharing and discussion website. A subreddit is a specific online community with posts associated
with that specific topic. Subreddits are denoted by /r/, followed by the subreddit’s name, e.g., /r/WallStreetBets.
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Appendices

A Proofs and Details
This section provides additional details and proofs of the results presented in this study and all the

intermediate results that have been omitted from the main body of the paper.

This sections is organized as follows. Section A.1 presents more derivations and proofs for com-

bining two types of signals under threshold communication strategy. Then the action stage is solved.

Finally, Section A.2 establishes communication stage results.

The section proceeds by defining the binary message communication equilibrium.

Definition 1 Communication strategy x∗C , action strategy a∗, and belief rule p, form a pure strategy

symmetric perfect Bayesian equilibrium if

[i] For any xi ∈ Xi,

x∗C(xi) ∈ arg max
m∈Mi

∫
θ∈Θ

u(a(xi; (m(xi),m−i), a−i; θ)p(θ|xi, I)dθ

[ii] For a given m ∈Mi,

a∗(xi; I) ∈ argmax
a∈Ai

∫
θ∈Θ

u(a, a−i; θ)p(θ|xi, I)dθ

[iii] p is obtained by Bayes rule

p(θ|xi, I) =
p(xi, I|θ)p(θ)∫

Θ

p(xi, I|θ)p(θ)dθ
,

where

m(xi) =

1, if xi ≥ xC
0, o.w.

(3)

and

a(xi; I) =

1, if (xi ≥ xC ∧ xj ≥ xC) ∨ (xi ≥ x̄)

0, o.w.
(4)

I ∈Mi ×Mj , I1 = (m, 1), I0 = (m, 0) and i ∈ I, i 6= j.
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A.1 Combining Binary and Continuous Signals

A.1.1 Preliminaries and proofs
For the babbling equilibrium, because there is no information conveyed by the messages, the posterior

distribution will coincide with the one in the baseline framework of Section 3.1. Hence, different

communication stage strategy could lead to distinct posterior distribution. Let us focus on symmetric

threshold strategies in communication stage and resulting posterior distribution and its properties.

Recall that, the state of the world θ is drawn from a normal distribution with mean θ0 and variance

σ2
θ . The agent i’s private signal is drawn from a normal distribution with mean θ and variance σ2

i . The

agent j’s signal is xj and player i receives a message mj :

xj = θ + εjσj

mj =

1, if xj ≥ x∗C
0, if xj < x∗C

.

Hence, the distribution of mj is

mj ∼ Bern(1− q(θ)),

where

q(θ) =
1√

2πσj

∫ x∗C

−∞
exp

(
−(y − θ)2

2σ2
j

)
dy

Lemma 2 The density of mj given θ can be written as

p(mj |θ) = Φ(ζjθ; ζjx
∗
C , σ

2
j )

where ζj := sgn(2mj − 1).

Proof. As mj is a Bernoulli-distributed random variable,

p(mj |θ) = (1− q(θ))mj × q(θ)1−mj

where q(θ;x∗C , σ
2
j ) := Φ(x∗C ; θ, σ2

j ). First, notice that Φ(x∗C ; θ, σ2
j ) = 1−Φ(θ;x∗C , σ

2
j ). Whenmj = 1,

we have

p(mj = 1|θ) = Φ(θ;x∗C , σ
2
j )

When mj = 0:

p(mj = 0|θ) = Φ(x∗C ; θ, σ2
j ) = Φ(−θ;−x∗C , σ2

j )

Thus,

p(mj |θ) = Φ(ζjθ; ζjx
∗
C , σ

2
j )

where ζj := sgn(2mj − 1).
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Lemma 3 The likelihood function of θ, with data (xi,mj), is Extended Skew-Normal with parameters

ESN(Xi, σi, α, τ), and density

p(θ) =
1

Φ(τ)

1

σi
φ

(
θ − xi
σi

)
Φ

(
α0 + α

θ − xi
σi

)
where

α := ζj × σi/σj , α0 := ζj × (xi − x∗C)/σj , τ :=
α0√

1 + α2

Proof. As xi and mj are conditionally independent, then, by Lemma 2,

p(xi,mj |θ) = φ(θ;xi, σ
2
i )Φ(ζjθ; ζjx

∗
C , σ

2
j )

As a function of θ,

p(θ|xi,mj) ∝ φ(θ;xi, σ
2
i )Φ(ζjθ; ζjx

∗
C , σ

2
j )

Let τ := α0√
1+α2

. Then ∫
φ(θ;xi, σ

2
i )Φ(ζjθ; ζjx

∗
C , σ

2
j )dθ = Φ(τ)

Thus

p(θ) =
1

Φ(τ)

1

σi
φ

(
θ −Xi

σi

)
Φ

(
α0 + α

θ −Xi

σi

)
which is the pdf of an Extended Skew-Normal (ESN) distribution.

The likelihood is extended skewed normal with parameters ESN(Xi, σi, α, τ), and the prior is

N(θ0, σθ).

Proof of Lemma 1. Lemma 3 establishes the likelihood function of θ. With a normal prior for θ,

the updating formulae in Azzalini (2013) is used. �

A.1.2 Mean and variance derivation
The moment generating function (eq 2.40, Azzalini (2013)):

M(t) := E {exp(ξt+ σiZt)} = exp(ξt+ 0.5σ2
i t)

Φ(τ + δσit)

Φ(τ)

The mean is µ = d
dtM(t)|t=0. Let’s take the derivative

d

dt
M(t) = exp(ξt+ 0.5σ2

i t
2)
[
ξ + σ2

i t
] Φ(τ + δσit)

Φ(τ)
+ exp(ξt+ 0.5σ2

i t
2)
φ(τ + δσit)

Φ(τ)
(δσi)

Evaluate at t = 0,

µ =
d

dt
M(t)|t=0 = ξ +

φ(τ)

Φ(τ)
(δσi)
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When τ = 0
d

dt
M(t)|t=0 = ξ +

√
2

π
(δσi)

Note that, in our case, we actually have∫
θφ(θ;Xi, σi)Φ(θ;x∗C , σj)dθ

which is missing the normalizing term Φ(τ). Therefore,∫
θφ(θ;Xi, σi)Φ(θ;x∗C , τj)dθ = XiΦ(τ) + φ(τ)δσi

Now for the variance. The second derivative of M(t):

d2

dt2
M(t)|t=0 = ξ2 + σ2

i + ξ
φ(τ)

Φ(τ)
(δσi) + ξ

φ(τ)

Φ(τ)
(δσi)−

φ(τ)

Φ(τ)
τ(δσi)

2

Then

σ2 =
d2

dt2
M(t)|t=0 −

[
d

dt
M(t)|t=0

]2

= σ2
i −

φ(τ)

Φ(τ)
τ(δσi)

2 −
[
φ(τ)

Φ(τ)
(δσi)

]2

or

σ2 = σ2
i

(
1− φ(τ)

Φ(τ)
δ2

[
τ +

φ(τ)

Φ(τ)

])
When τ = 0:

σ2 = σ2
i

(
1− 1/(2π)

0.52
δ2

)
or

σ2 = σ2
i

(
1− 2

π
δ2

)
Therefore, we say that θ with pdf

p(θ) =
1

Φ(τ)
φ(θ;Xi, σi)Φ(θ;x∗C , σj)

is a random variable with an extended Skew-Normal distribution, and parameters

α := σi/σj , δ := α/
√

1 + α2, α0 := (Xi − x∗C)/σj , τ =
α0√

1 + α2

which yields the standard notation of

p(θ) =
1

Φ(τ)

1

ω
φ

(
θ − ξ
ω

)
Φ

(
α0 + α

θ − ξ
ω

)
where ξ := Xi, ω := σi.
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Finally, the CDF. Using Eq. 2.49, Azzalini (2013):

Φ(x;α, τ) = Φ(x)− 1

Φ(τ)
[H(x, τ ;α)−H(τ, x;α)]

where we have defined

H(y, z;α) = T
(
y, α+ y−1z

√
1 + α2

)
− T

(
y, y−1τ

)
and T is Owen’s T -function:

T (h, a) =
1

2π

∫ a

0

exp(−0.5h2(1 + x2))

1 + x2
dx

An alternative representation using the bivariate normal distribution:

Φ(x;α, τ) =
ΦB(x, τ ;−δ)

Φ(τ)

where

ΦB(x, y; ρ) =

∫ x

−∞

∫ y

−∞
φ(t)φ

(
u+ δt√
1− δ2

)
1√

1− δ2
dudt

Conditional on the other player’s message (mj = 0 or mj = 1) and communication threshold x∗C ,

we first assume that players follow a symmetric threshold strategy

ai(xi;x
∗
C , I) =

1, if xi ≥ x∗(I)

0, if xi < x∗(I)
, (5)

where I = (mi,mj). Based on whether mj = 0 or mj = 1, x∗(I) will be different. Hence, there are

two thresholds: the other player sent “attack” message, call it x∗ and the other player sent “no attack”

message, call it x̄∗.

Equation 6 provides the expected payoff in the action stage for a player i choosing to attack con-

ditional on information (xi, x
∗
C , I). In addition, player i assumes that player j follows a threshold

strategy x∗j (I).

Va(xi, x
∗
j ;x
∗
C , I) =

θ∫
θ

θ
[
Pr(xj ≥ x∗j |θ, xi, x∗C , I)

]
p(θ|xi, x∗C , I)dθ +

∞∫
θ

θp(θ|xi, x∗C , I)dθ − c (6)

where

p(θ|xi, x∗C , I) =
p(xi, x

∗
C , I|θ)p(θ)∫

Θ

p(xi, x∗C , I|θ)p(θ)dθ
(7)

I ∈Mi ×Mj , xi ∈ Xi and i ∈ I , i 6= j. Next, the equilibrium of the action stage is defined.
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Definition 2 Given messages m = (mi,mj) and message thresholds x∗C = (m∗i ,m
∗
j ) from the com-

munication stage, an equilibrium in monotone strategies for the action stage of the game is a pure

strategy profile a∗ = (a∗i , a
∗
j ) and corresponding thresholds x∗ = (x∗i , x

∗
j ) such that x∗i solves

Va(x
∗
i , x
∗
j ; I) = 0,

where

a∗i (xi;x
∗
C , I) =

1, if xi ≥ x∗i (I)

0, if xi < x∗i (I)

for all i ∈ I, i 6= j.

Conditional on the case of mj = 1 or mj = 0, x∗ := x∗i (I1) and x̄∗ := x∗i (I0) solve

Va(x
∗, x∗;x∗C , I1) = 0 and Va(x̄∗, x̄∗;x∗C , I0) = 0,

where I1 = (·, 1) and I0 = (·, 0). The expected payoff of attack action with realized signal xi,

conditional on mj = 1, aj = 1 and mj = 0, aj = 0, can be written as

V1 =

∞∫
θ

θp(θ|xi, xi, I1)dθ − c, (8)

V0 =

∞∫
θ̄

θp(θ|xi, xi, I0)dθ − c, (9)

where I1 = (·, 1) and I0 = (·, 0). Observe that both equations, (8) and (9), are bounded from below

by −c.
There exists a unique solution of the action stage of the game given a condition on the relative

informativeness of the private signal compared to the public signal. If σi/σθ is sufficiently small,

i.e., the private signal is sufficiently more precise than the public signal, then we obtain the following

proposition.

Proposition 1 There exists a unique, dominance solvable equilibrium of the actions stage of the game

in which player i ∈ I uses threshold strategies, characterized by (x∗, x̄∗), if γ(σθ, σi) >
√

2.

Action stage expected payoff can be written as follows:

V ((x̃∗, x∗)|x∗C , I) =

θ̄∫
θ

θPr [xj ≥ x∗|θ, x∗C , I] p(θ|x̃∗, x∗C , I)dθ +

∞∫
θ̄

θp(θ|x̃∗, x∗C , I)dθ − c

I = (m(x̃∗),m(x∗)) ∈M.
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Posterior belief

p(θ|x̃∗, x∗C , I) =
p(x̃∗, x∗C , I|θ)p(θ)∫

Θ

p(x̃∗, x∗C , I|θ)p(θ)dθ
,

x̃∗ = x∗C solves V ((x̃∗, x∗C)|I1) = c, where

V ((x̃∗, x∗C)|I1) =

θ̄∫
θ

θ Pr [xj ≥ x∗C |θ, x∗C , I1]︸ ︷︷ ︸
=1

p(θ|x̃∗, x∗C , I1)dθ +

∞∫
θ̄

θp(θ|x̃∗, x∗C , I1)dθ − c

=

∞∫
θ

θp(θ|x̃∗, I1)dθ − c

x̃∗ = x̄∗ solves V ((x̃∗, x∗C)|I0) = c, where

V ((x̃∗, x∗C)|I0) =

θ̄∫
θ

θ Pr [xj ≥ x∗C |θ, x∗C , I0]︸ ︷︷ ︸
=0

p(θ|x̃∗, x∗C , I0)dθ +

∞∫
θ̄

θp(θ|x̃∗, x∗C , I0)dθ

=

∞∫
θ̄

θp(θ|x̃∗, x∗C , I0)dθ

Consider the case when I = I1 and symmetric action stage threshold is x∗

V ((x∗, x∗)|x∗C , I1) =

θ̄∫
θ

θPr [xj ≥ x∗|θ, x∗C , I1] p(θ|x∗, x∗C , I1)dθ +

∞∫
θ̄

θp(θ|x∗, x∗C , I1)dθ − c

If the expression dV ((x∗,x∗)|x∗C ,I1)
dx∗ is always positive, there is a unique value of x∗ solving V (x∗, x∗|x∗C , I1) =

0 and the unique strategy surviving iterated deletion of strictly dominated strategies is a threshold rule

with a cutoff x∗. Furthermore, because we know that V ((x∗C , x
∗
C)|x∗C , I1) = 0, we get the unique

cutoff x∗ = x∗C .

Lemma 4 dV ((x∗,x∗)|x∗C ,I1)
dx∗ > 0.

Proof.

dV ((x∗, x∗)|x∗C , I1)

dx∗
=

θ̄∫
θ

θ

(
Pr [xj ≥ x∗|θ, x∗C , I1]

∂p(θ|x∗, x∗C , I1)

∂x∗
+ p(θ|x∗, x∗C , I1)

∂p(θ|x∗, x∗C , I1)

∂x∗

)
dθ

+

∞∫
θ̄

θ
∂p(θ|x∗, x∗C , I1)

∂x∗
dθ
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≥
∞∫
θ̄

φ(τc)

Φ(τc)

ζ√
1 + α2

c

(
1

σj(1 + σ2
θ/σ

2
i )
−
√

1 + α2

σ2
i + σ2

j

)
︸ ︷︷ ︸

> 0, if γ(σi,σθ)>
√

2

dθ

+

∞∫
θ̄

ζ
φ(τc

√
1 + α2

c + αc
θ−ξc
ωc

)

Φ(τc
√

1 + α2
c + αc

θ−ξc
ωc

)

(√
1 + α2

σ2
i + σ2

j

− 1

σj(1 + σ2
θ/σ

2
i )

)
︸ ︷︷ ︸

> 0, if γ(σi,σθ)>
√

2

dθ

(
γ(σi, σθ) :=

r(r2 + 1)

σθ
>
√

2, where r :=
σθ
σi

, then
)

> 0

A.2 Communication Stage
Based on the aforementioned results, let us turn to the communication stage:

Lemma 5 The communication strategy mi : Θ→Mi is a threshold rule.

Proof. Recall that mi : Xi → Mi, ai : Xi ×M → Ai and ui : A × Θ → R, where M = Mi ×Mj ,

A = Ai ×Aj , for i ∈ I and i 6= j. The expected utility can be written as∫
θ∈Θ

ai(xi; (mi(xi),m−i))[θ(1{θ∈[θ,θ̄)}aj(xj ; (mi(xi),m−i)) + 1{θ≥θ̄})− c]p(θ|xi, (mi(xi),m−i))dθ

(10)

Let ς = (m, a, p) be a symmetric pure strategy perfect Bayesian equilibrium. Take x1 and x2 ∈ Xi,

such that x1 < x2 and mi(x1) 6= mi(x2) and let∫
θ∈Θ

u(a(x2; (m(x2),m−i)), a−i; θ)p(θ|x2, (m(x2),m−i))dθ ≥ (11)

∫
θ∈Θ

u(a(x1; (m(x1),m−i)), a−i; θ)p(θ|x1, (m(x1),m−i))dθ

(The abovementioned conditions exclude the equilibria in which mi(xi) = mi(xj) for all xi, xj ∈
Xi. Because, we are looking for an informative communication strategy, where some information is

transmitted, the condition is without loss of generality.) Consider x3 ∈ Xi, such that x3 > x2. Then,

because p(θ|x2, I) > p(θ|x1, I), for any I ∈M and given equation 11, we obtain

Pr(aj = 1|x2, (m(x2),m−i)) ≥ Pr(aj = 1|x1, (m(x1),m−i)) (12)
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Then, equation 12 yields∫
θ∈Θ

u(a(x3; (m(x2),m−i)), a−i; θ)p(θ|x3, (m(x2),m−i))dθ ≥ (13)

∫
θ∈Θ

u(a(x3; (m(x1),m−i)), a−i; θ)p(θ|x3, (m(x1),m−i))dθ (14)

therefore, m(x3) = m(x2).

B Costly and noisy messages and richer message space

B.1 Costly messages
Does the communication equilibria in the binary message case survive a small message cost? The an-

swer is yes, with a small adjustment of the threshold. While introducing costly messages, the message

space is augmented with an empty message with no cost. That is, let M̃i = Mi∪{∅} and let mi = ∅ be

costless. The message cost does not influence the agents’ best responses, and the analysis is unchanged

up to the slight change of thresholds. Instead of the attacking cost of c, the consideration is as if the

cost was c+ ε, where ε is the message cost.

The communication equilibrium described in the paper in binary message case provides a unique

outcome in the action stage; however, the communication stage can be slightly modified without af-

fecting the equilibrium or its consequences. For example, consider some signal xN ∈ Xi, for which

player i will abstain from attacking irrespective of the received messages. Since messages are costless

and the final action is ai = 0, this player is indifferent between sending any message. Because of

that, we can construct the following equilibrium. For all signals xi ∈ Xi\{xN}, players follow the

equilibrium described in the Theorem 1, but xi = xN sends a message m(xN ) = 1. Since xi = xN

is a measure zero event, it will not affect the best responses or the thresholds. We have constructed an

informative equilibrium that is payoff equivalent to the equilibrium described in Theorem 1, but has

a distinct communication stage. This communication stage equilibrium is not sustainable with costly

messages.

B.2 Noisy Message Transmission
Firstly, let us closely examine the fully revealing equilibrium. Suppose the messages sent are the signal

realizations mi = xi and messages received are taken at face value. This communication stage induces

common posterior θ|xi,mj ∼ N
(
θ̌, σ̌2

)
. To calculate θ̌, σ̌2, let the average of the two signals be

x̄ := 1
2(x1 + x2). Since the average signal is a sufficient statistic, we will refer to it as the player i’s

combined signal. Using the standard approach, the prior belief is updated with the combined signal

x̄, which induces a common posterior θ|x̄ ∼ N
(
θ̌, σ̌2

)
, where θ̌ =

x̄σ2
θ+θ0σ2

σ2
θ+σ2 , σ̌2 =

σ2
θσ

2

σ2
θ+σ2 and

σ2 := 1
4(σ2

1 + σ2
2). The first-best outcome of the game is for both players to take an attack action, if

posterior mean, θ̌, is greater than the cost of attacking c and abstain otherwise.
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If there is no noise, fully revealing the signals is an equilibrium, since once signals are combined,

players’ preferences are perfectly aligned. Now, assume there is some residual uncertainty, that is, for

example, let messages get distorted in the transition process with noise ξ N(0, σ2
ξ ) that is independent

of the state and signals. Then, player i would exaggerate the signal fearing a negative distortion in

the message sending process. This slight misalignment distorts the fully revealing equilibrium. This

example highlights how sensitive fully revealing equilibrium is to slight noise in messages.

B.3 Richer message space
This section examines the case in which the message space is as large as the signal space |Mi| = |Si|.
In particular, without loss of generality letMi = Si. This section focuses on equilibria that preserve the

structure of the global games in the second stage (Section B.2 above characterizes the fully revealing

equilibrium).

In the equilibrium presented below, the richness of message space allows players to reduce the

cases of miscoordination. However, it does not increase the probability of coordinated attacks; it only

reduces the cases of unsuccessful unilateral attacks. Therefore, the most informative equilibrium among

the partially informative equilibria of the type described below is identical to binary message equilibria

when there is a possibility for both of the players to attack or when both players are not attacking for

sure.

Result 6 Communication equilibrium with rich message space

There exists a perfect Bayesian equilibrium, where

(i) in the communication stage player i sends a message mi(xi), and

(ii) in the action stage player i takes an action ai(xi;x∗C , I), where

mi(xi) =

x∗C , if xi ≥ x∗C
xi, if xi < x∗C

(15)

ai(xi;xC , I) =

1, if xi, xj ≥ xC or xi ≥ x̄∗(xj)
0, o.w.

(16)

I = (mi,mj), for xi ∈ Xi and i ∈ I , i 6= j.

The “positive message,” an intention to attack, is pooled as in the case of binary signals (the result

can be obtained by closely following the logic outlined in Lemma 5). That is, if xi ≥ x∗C , thenmi = x∗C
(For xi ≥ x∗C , messages are pooled and without loss of generality, letmi = x∗C). However, the richness

of messages reduces the cases of miscoordination. When xi < x∗C , player i will never attack, hence

this player is indifferent between sending any message. Therefore, we can let the message be anything

but the positive message that states xi ≥ x∗C . By setting mi(xi) = xi, the probability of mistakes

(unsuccessful attacks) for player j is reduced, leading to the less wasted c in the action stage.
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C Additional Figures and Tables

Treatments Rounds Threshold Strategy Perfect Almost Perfect

TI
All 50 98.0% 28.0% 70.0%
Last 25 98.0% 88.0% 10.0%

TI&S
All 50 87.5% 32.5% 55.0%
Last 25 97.5% 90.0% 7.5%

Table 5: Threshold strategy usage

Variable %

Gender: Female 44.44
Game Theory: Yes 15.66
GPA (self reported) 3.5

Major: Computer Science 17.68
Economics 10.61
Humanities 9.091

Math 5.051
Physics/Chemistry 2.525

Other 54.55

Table 6: Survey Summary

Figure 10: Distribution of realized signals
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D Comparison example
This section presents a simple example to intuitively illustrate the differences between the current paper

and Baliga and Morris (2002) and to highlight the fundamental differences in game incentives. Let us

start with the game:

I N
I −5 −5

N 0 0

Figure 11: Low type: Dominant Strategy is not to Attack
I N

I 10− 5 −5

N 0 0

Figure 12: Medium type: attack only if the other is attacking
I N

I 10− 5 10− 5

N 0 0

Figure 13: High type: Dominant Strategy is to Attack

Suppose there are only two messages available, m and m′. Baliga and Morris (2002) type of

equilibrium:

Messages sent and actions taken

m̃i(ti) =

m, if ti = L or H

m′, if ti = M

ãi(ti,mi,mj) =

I, if (ti,mi,mj) = (L,m,m), (L,m′,m′) or (M,m′,m′)

N, otherwise

Consider the following deviation: Suppose player i is type H and message profile is (m,m′).

Equilibrium prescribes this type not to invest. However, the player gets 0 if the player does not invest

and 5 if the player invests. The important difference is that sometimes, even if player i is sure that player

j is not joining, then player i would still want to join. This difference is what drives the differences

and allows for some of the results in this study that are not present in Baliga and Morris (2002). This

is also the reason why the type of equilibria where communication strategy is non-monotonic such as

Example 4 in Baliga and Morris (2002) is not present in the current paper.

Moreover, unlike the above example, in incomplete information case, even when it is a dominant

strategy to invest, the other player joining increases the probability of success. Therefore, the high

types would never pretend to be low types.
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Instructions
This is an experiment in economic decision making. The funds have been provided to run this
experiment and if you make good decisions you may earn a substantial amount of money, which
will be paid to you privately in cash vouchers at the end of the experiment. We ask you not to
communicate with each other from now on and turn your mobile devices to silent mode. If you
have any questions, please raise your hand.

The experiment consists of 50 independent and identical rounds. In this experiment you will
be randomly paired with another person in the room, and you will remain matched with this
person throughout the 50 rounds that you play.

Your payoff for each round will depend on your choice, on the choice of the person you have been
paired with, and on chance. At the end of the experiment, the computer will randomly select five
of the rounds that you played and you will be privately paid the average of what you earned in
those specific rounds. The currency in this experiment is called tokens, and will be converted to
dollars at the end of the experiment at a rate of 6 tokens per dollar. In addition, you will receive a
participation fee of 10 dollars.

Decisions in each of 50 rounds

You will start each round of the experiment with an endowment of 24 tokens.
Each round of the experiment will consist of one decision stage in which you and your pair

member will make a choice between two alternatives: A or B based upon the information you
receive about an unknown number X . The number X is selected randomly in each round and
you will not know what this number is nor will your pair member. We will discuss how the
number X is randomly chosen later.

Payoff from Choosing Alternative B

Taking choice B does not yield any extra payoff no matter what your pair member does, so if you
choose B, your total payoff for the round will be your endowment of 24.

Payoffs from Choosing Alternative A

If you choose A, then your payoff will depend on how large the unknown number X is and on
whether your pair member selects A or B. Choosing alternative A always has a cost to you of 18
tokens.

Table 1 explains how the payoff of decision A depends on the true value of X and on the
choice you and your pair member choose. The second column of Table 1 contains a small table
that explains, for each possible value of X , the payoff that you and your pair member will receive,
depending on the choices you and your pair member choose. Your payoff is the first number in
the cell, and your pair member’s payoff is the number after the comma.

1

E Instructions (control treatment)
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Table 1: Payoffs

If the value of X is : Payoffs

Below 0

Other’s Choice
A B

Your A 6, 6 6, 24
Choice B 24, 6 24, 24

Between 0.01 and 99.99

Other’s Choice
A B

Your A X + 6, X + 6 6, 24
Choice B 24, 6 24, 24

Higher than 100

Other’s Choice
A B

Your A X + 6, X + 6 X + 6, 24
Choice B 24, X + 6 24, 24

Let us look at these payoffs more closely:

• If you choose A and the true value of X is less than 0, then you will receive 24 − 18 = 6 no
matter what your pair member chooses.

• If the true value of X is between 0.01 and 99.99, then the payoff of choice A is equal to
24 +X − 18 if both you and your pair member decide for A. In this case, we say that choice
A is successful and each participant receives the amount of 24 +X − 18 = X + 6.

• If the value of X is between 0.01 and 99.99 and only you choose A (your pair member chooses
B), then choice A is not successful and you will not get any extra payoff. In this case you
will receive 24− 18 = 6.

• Finally, if X is higher than 100.00, then if you choose A you will receive 24+X − 18 = X +6

regardless of what your pair member chooses.

Notice that your final payoff depends on the value of X and on the choice of you and your pair
member.
Notice as well that for very high and very low values of X , your payoff does not depend on the
choice of your pair member.
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How is X chosen and what will you know about it.
The unknown number X is chosen from a distribution portrayed in Figure 1, which is called a
normal distribution with mean 50 and standard deviation of 50.

What Figure 1 shows is that while you will not be told the value of X , you will know that 95%
of the time the number X will have a value between −48 and 148 and that it is centered around
50. This means that the number X can take one of many possible values, but the numbers that are
closer to 50 have a higher probability to be drawn than those numbers that are further away from
50.

Figure 1: Graph of the probability density function of the unknown number X

While you will not know the value of X that is drawn, you and your pair member will each
receive a different signal giving you a hint as to what X is. This signal will be drawn at random
from a similar normal distribution as the one shown in Figure 1 above, except that the mean will
now be the number X and the standard deviation will be 10. This means that for the value of X
that is selected in each round 95% of the times your signal will have a value between X − 19.6

and X + 19.6. So, for example, if the unobserved number X is 90 your signal will come from a
distribution with mean 90 and standard deviation 10, so that 95% of the times your signal will be
a number between 70.4 and 109.6.

At the beginning of each round the number X will be randomly selected, but you and your
pair member will not observe it. Instead, you and your pair member will each receive a private
signal, independently drawn from the distribution with mean X and standard deviation 10. This
means that you and your pair member will observe different signals. On the basis of your signal
you are going to make your choice between two alternatives: A or B.

A round is ended once you and your pair member have made your decisions about choosing
A or B. Remember that there are 50 rounds in the first part of the experiment.
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Information after each round

After each round you will be informed about:

• The true value of the number X ,

• Your signal,

• Your choice,

• Your pair member’s choice,

• Your individual payoff for the round.

After a round is over, you will proceed to the next round and face the same decision. Note that
the values of X are randomly and independently determined from round to round, so a high X

in one period does not imply anything about the likely value of X for the next period.

Payoffs

When you reach the end of the experiment, five of the fifty rounds that you have played will be
randomly selected and you will get paid in dollars the average of the payoffs you obtained in those
rounds. In particular, the first paying round will be randomly selected from the first 10 rounds
you played, the second paying round will be randomly selected from the second 10 rounds you
played, the third paying round will be randomly selected from the third 10 rounds you played,
the fourth paying round will be randomly selected from the fourth 10 rounds you played, and the
fifth paying round will be randomly selected from the last 10 rounds you played. The average
of the tokens you obtained in those particular rounds will be converted to US dollars and will be
paid to you in cash vouchers. 6 tokens correspond to 1 dollar. You will also receive a show up fee
of 10 dollars.

Summary

• An unknown number X is randomly chosen from probability distribution in Figure 1

• You will be shown a signal (a hint) based on the realization of X

• You will choose an action A or B, and so will your pair member

• When the round is over, you will see the information as described above

• The next round will start
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All instructions for the experiment were identical except the part regarding the messages. The

exerts about messages from each communication treatment are in the following subsections.

E.1 Messages (Intentions)
After you have observed your signal but before you make a choice betweenA andB you can send your

pair member a message, which can only be two letters: A or B. You will receive the message your pair

member sent and your pair member will receive your message.

E.2 Messages (Signals)
After you have observed your signal but before you make a choice betweenA andB you can send your

pair member a message, which can be any number. You will receive the message your pair member

sent and your pair member will receive your message.

E.3 Messages (Intentions and Signals)
After you have observed your signal but before you make a choice you can send your pair member a

message, which consists of sending two letters: A or B and any number. You will be sent the messages

from your pair member and your pair member will receive your messages.
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